Recent advances in formic acid electro-oxidation: from the fundamental mechanism to electrocatalysts

被引:72
|
作者
Fang, Zhongying [1 ,2 ]
Chen, Wei [1 ,2 ]
机构
[1] Chinese Acad Sci, Changchun Inst Appl Chem, State Key Lab Electroanalyt Chem, Changchun 130022, Jilin, Peoples R China
[2] Univ Sci & Technol China, Hefei 230029, Anhui, Peoples R China
来源
NANOSCALE ADVANCES | 2021年 / 3卷 / 01期
基金
中国国家自然科学基金;
关键词
TRANSITION-METAL SURFACES; METHANOL OXIDATION; ELECTROCHEMICAL OXIDATION; OXYGEN REDUCTION; PD; NANOPARTICLES; ELECTRODES; CO; NANOCRYSTALS; ALLOY;
D O I
10.1039/d0na00803f
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Direct formic acid fuel cells have attracted significant attention because of their low fuel crossover, high safety, and high theoretical power density among all the proton-exchange membrane fuel cells. Much effort has been devoted to the study of formic acid oxidation, including the reaction processes and electrocatalysts. However, as a model reaction, the anodic electro-oxidation process of formic acid is still not very clear, especially regarding the confirmation of the intermediates, which is not helpful for the design and synthesis of high-performance electrocatalysts for formic acid oxidation or conducive to understanding the reaction mechanisms of other small fuel molecules. Herein, we briefly review the recent advances in investigating the mechanism of formic acid electro-oxidation and the basic design concepts of formic acid oxidation electrocatalysts. Rather than an exhaustive overview of all aspects of this topic, this mini-review mainly outlines the progress of this field in recent years.
引用
收藏
页码:94 / 105
页数:12
相关论文
共 50 条
  • [21] Recent advances in electrocatalysis of Formic acid oxidation
    Rice, C. A. (criceyork@tntech.edu), 1600, Springer Verlag (09):
  • [22] Study of ellagic acid electro-oxidation mechanism
    Simic, Aleksandra Z.
    Verbic, Tatjana Z.
    Sentic, Milica N.
    Vojic, Mirjana P.
    Juranic, Ivan O.
    Manojlovic, Dragan D.
    MONATSHEFTE FUR CHEMIE, 2013, 144 (02): : 121 - 128
  • [23] Study of ellagic acid electro-oxidation mechanism
    Aleksandra Z. Simić
    Tatjana Ž. Verbić
    Milica N. Sentić
    Mirjana P. Vojić
    Ivan O. Juranić
    Dragan D. Manojlović
    Monatshefte für Chemie - Chemical Monthly, 2013, 144 : 121 - 128
  • [24] Electro-oxidation of methanol and formic acid on platinum nanoparticles with different oxidation levels
    Hsieh, Chien-Te
    Hsiao, Han-Tsung
    Tzou, Dong-Ying
    Yu, Po-Yuan
    Chen, Po-Yen
    Jang, Bi-Sheng
    MATERIALS CHEMISTRY AND PHYSICS, 2015, 149 : 359 - 367
  • [25] Highly Active Carbon Nanotube-Supported Bimetallic Palladium-Iron Electrocatalysts for Formic Acid Electro-Oxidation
    Jin, Yanxian
    Ma, Chun'an
    Shi, Meiqin
    Chu, Youqun
    Xu, Yinghua
    Huang, Tao
    Huang, Qian
    Miao, Yiwai
    INTERNATIONAL JOURNAL OF ELECTROCHEMICAL SCIENCE, 2012, 7 (04): : 3399 - 3408
  • [26] Composition effects of FePt alloy nanoparticles on the electro-oxidation of formic acid
    Chen, Wei
    Kim, Jaemin
    Sun, Shouheng
    Chen, Shaowei
    LANGMUIR, 2007, 23 (22) : 11303 - 11310
  • [27] Spectrometric Evidence of the Synergy between Formic Acid and Hydrazine on Their Electro-Oxidation
    Machado, Eduardo G.
    Delmonde, Marcelo V. F.
    Varela, Hamilton
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2017, 164 (09) : H647 - H650
  • [28] Unexpected activity of palladium on vanadia catalysts for formic acid electro-oxidation
    Larsen, R
    Zakzeski, J
    Masel, RI
    ELECTROCHEMICAL AND SOLID STATE LETTERS, 2005, 8 (06) : A291 - A293
  • [29] Graphene aerogel supported platinum nanoparticles for formic acid electro-oxidation
    Cogenli, M. Selim
    Bayrakceken Yurtcan, Ayse
    MATERIALS RESEARCH EXPRESS, 2018, 5 (07):
  • [30] Adsorption of Formate on Au(111) in Acid Solution: Relevance for Electro-Oxidation of Formic Acid
    Kibler, Ludwig A.
    Al-Shakran, Mohammad
    JOURNAL OF PHYSICAL CHEMISTRY C, 2016, 120 (29): : 16238 - 16245