Tailoring selective pores of carbon molecular sieve membranes towards enhanced N2/CH4 separation efficiency

被引:34
|
作者
Yu, Hyun Jung [1 ]
Shin, Ju Ho [1 ]
Lee, Albert S. [2 ]
Hwang, Seung Sang [2 ]
Kim, Jeong-Hoon [3 ]
Back, Seoin [1 ,4 ]
Lee, Jong Suk [1 ,4 ]
机构
[1] Sogang Univ, Dept Chem & Biomol Engn, Baekbeom Ro 35, Seoul 04107, South Korea
[2] Korea Inst Sci & Technol, Mat Architecturing Res Ctr, Hwarang Ro 14 Gil 5, Seoul 02792, South Korea
[3] Korea Res Inst Chem Technol, C1 Gas & Carbon Convergent Res Ctr, Chem & Proc Technol Div, Gajeong Ro 141, Daejeon 34114, South Korea
[4] Sogang Univ, Inst Emergent Mat, 35 Baekbeom Ro, Seoul 04107, South Korea
基金
新加坡国家研究基金会;
关键词
Carbon molecular sieve membrane; N-2/CH4; separation; SiOx phase; DFT calculations; Interaction energy; GAS SEPARATION; HYDROGEN SEPARATION; SAPO-34; MEMBRANES; PERFORMANCE; CO2/CH4;
D O I
10.1016/j.memsci.2020.118814
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
Membrane-based separation technology is attractive for upgrading small-scale natural gas due to the benefits of the pressure-driven process with a small footprint. Very few carbon molecular sieve (CMS) membranes with high N-2/CH4 separation efficiency have been reported since the relationship between CMS structure and separation performance has not been fully elucidated. Here, we report the significance of controlling the effective pore size in our newly developed hybrid CMS matrix for enhanced N-2/CH4 selectivity based on experimental characterizations and density functional theory (DFT) calculations. A new class of CMS membranes with an excellent N-2/CH4 selectivity is demonstrated by pyrolysis of a homogeneous, hydrogen-bonded blend of BTDA-Durene:DABA (3:2) polyimide and ladder-structured poly(phenyl-co-3-(2-aminoethylamino)propyl)silsesquioxane (LPDA64). DFT calculations suggest that electron accumulation at SiOx phases of hybrid CMS membranes strongly hinders the diffusion of CH4 compared to N-2 due to a larger electron overlap, resulting in a smaller effective pore size. Moreover, elevating the pyrolysis temperatures enhanced the N-2/CH4 solubility selectivity due to the strong repulsive interaction between the newly formed ultramicropores with CH4. As a result, the hybrid CMS membranes showed an excellent single gas and N-2/CH4/C2H6 (20/76/4) mixed gas N-2/CH4 selectivity (28 and 16, respectively).
引用
收藏
页数:9
相关论文
共 50 条
  • [21] Application of nanoporous graphene membranes in natural gas processing: Molecular simulations of CH4/CO2, CH4/H2S and CH4/N2 separation
    Sun, Chengzhen
    Wen, Boyao
    Bai, Bofeng
    CHEMICAL ENGINEERING SCIENCE, 2015, 138 : 616 - 621
  • [22] Adsorption of CO2, CH4 and N2 on ordered mesoporous silica molecular sieve
    Liu, XW
    Li, JW
    Zhou, L
    Huang, DS
    Zhou, YP
    CHEMICAL PHYSICS LETTERS, 2005, 415 (4-6) : 198 - 201
  • [23] Perylene based novel mixed matrix membranes with enhanced selective pure and mixed gases (CO2, CH4, and N2) separation
    Saqib, Sidra
    Rafiq, Sikander
    Muhammad, Nawshad
    Khan, Asim Laeeq
    Mukhtar, Ahmad
    Mellon, Nurhayati Binti
    Man, Zakaria
    Nawaz, Mian Hasnain
    Jamil, Farrukh
    Ahmad, Nasir M.
    JOURNAL OF NATURAL GAS SCIENCE AND ENGINEERING, 2020, 73
  • [24] PBI/Clinoptilolite mixed-matrix membranes for binary (N2/CH4) and ternary (CO2/N2/CH4) mixed gas separation
    Montes Luna, Angel de J.
    Fuentes Lopez, Nidia C.
    Castruita de Leon, Griselda
    Perez Camacho, Odilia
    Yeverino Miranda, Claudia Y.
    Perera Mercado, Yibran A.
    JOURNAL OF APPLIED POLYMER SCIENCE, 2021, 138 (14)
  • [25] CHROMATOGRAPHIC STUDY OF THE DIFFUSION OF N2,CH4 AND BINARY CH4-N2 MIXTURES IN 4A MOLECULAR-SIEVE
    RUTHVEN, DM
    KUMAR, R
    CANADIAN JOURNAL OF CHEMICAL ENGINEERING, 1979, 57 (03): : 342 - 348
  • [26] Surface modification on semi-coke-based activated carbon for enhanced separation of CH4/N2
    Yang, Zhiyuan
    Ning, Hailong
    Liu, Jiaoping
    Meng, Zhuoyue
    Li, Yinyan
    Ju, Xiaoqian
    Chen, Zhiping
    CHEMICAL ENGINEERING RESEARCH & DESIGN, 2020, 161 : 312 - 321
  • [27] Membranes for CO2 /CH4 and CO2/N2 Gas Separation
    Chawla, Muhammad
    Saulat, Hammad
    Khan, Muhammad Masood
    Khan, Muhammad Mahmood
    Rafiq, Sikander
    Cheng, Linjuan
    Iqbal, Tanveer
    Rasheed, M. Imran
    Farooq, Muhammad Zohaib
    Saeed, Muhammad
    Ahmad, Nasir M.
    Niazi, Muhammad Bilal Khan
    Saqib, Sidra
    Jamil, Farrukh
    Mukhtar, Ahmad
    Muhammad, Nawshad
    CHEMICAL ENGINEERING & TECHNOLOGY, 2020, 43 (02) : 184 - 199
  • [28] Effect of pore size on CH4/N2 separation using activated carbon
    Chen, Gaofei
    An, Yaxiong
    Shen, Yuanhui
    Wang, Yayan
    Tang, Zhongli
    Lu, Bo
    Zhang, Donghui
    CHINESE JOURNAL OF CHEMICAL ENGINEERING, 2020, 28 (04) : 1062 - 1068
  • [29] Novel zeolite/carbon monolith adsorbents for efficient CH4/N2 separation
    Liu, Jiaqi
    Shang, Hua
    Yang, Jiangfeng
    Wang, Jun
    Li, Jinping
    Deng, Shuguang
    CHEMICAL ENGINEERING JOURNAL, 2021, 426
  • [30] Effect of pore size on CH4/N2 separation using activated carbon
    Gaofei Chen
    Yaxiong An
    Yuanhui Shen
    Yayan Wang
    Zhongli Tang
    Bo Lu
    Donghui Zhang
    ChineseJournalofChemicalEngineering, 2020, 28 (04) : 1062 - 1068