Superacidity in Sulfated Metal-Organic Framework-808

被引:481
|
作者
Jiang, Juncong [1 ,2 ,3 ]
Gandara, Felipe [1 ,2 ,3 ]
Zhang, Yue-Biao [1 ,2 ,3 ]
Na, Kyungsu [1 ,2 ,4 ]
Yaghi, Omar M. [1 ,2 ,3 ,5 ]
Klemperer, Walter G. [6 ]
机构
[1] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA
[2] Kavli Energy NanoSci Inst Berkeley, Berkeley, CA 94720 USA
[3] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA
[4] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Chem Sci, Berkeley, CA 94720 USA
[5] King Fahd Univ Petr & Minerals, Dhahran 34464, Saudi Arabia
[6] Univ Illinois, Dept Chem, Urbana, IL 61801 USA
基金
新加坡国家研究基金会;
关键词
SOLID-ACID CATALYSTS; ALPHA-PINENE; CHROMIUM(III) CARBOXYLATE; PROTON CONDUCTIVITY; ZIRCONIA CATALYSTS; FUNCTIONAL-GROUPS; RECENT PROGRESS; SITES; WATER; ISOMERIZATION;
D O I
10.1021/ja507119n
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Superacids, defined as acids with a Hammett acidity function H-0 <=-12, are useful materials, but a need exists for new, designable solid state systems. Here, we report superacidity in a sulfated metal-organic framework (MOP) obtained by treating the microcrystalline form of MOF-808 [MOF-808-P: Zr6O5(OH)(3)-(BTC)(2)(HCOO)(5)(H2O)(2), BTC = 1,3,5-benzenetricarboxylate] with aqueous sulfuric acid to generate its sulfated analogue, MOF-808-2.5SO(4) [Zr6O5(OH)(3)(BTC)(2)-(SO4)(2.5)(H2O)(2.5)]. This material has a Hammett acidity function H-0 <= -14.5 and is thus identified as a superacid, providing the first evidence for superacidity in MOFs. The superacidity is attributed to the presence of zirconium-bound sulfate groups structurally characterized using single-crystal X-ray diffraction analysis.
引用
收藏
页码:12844 / 12847
页数:4
相关论文
共 50 条
  • [41] Piezochromic Porous Metal-Organic Framework
    Andrzejewski, Michal
    Katrusiak, Andrzej
    JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2017, 8 (01): : 279 - 284
  • [42] Porous Metal-Organic Framework Nanoparticles
    Casas-Solvas, Juan M.
    Vargas-Berenguel, Antonio
    NANOMATERIALS, 2022, 12 (03)
  • [43] Metal-organic framework compounds (MOFs)
    Kaskel, Stefan
    CHEMIE INGENIEUR TECHNIK, 2010, 82 (07) : 1019 - 1023
  • [44] Functional metal-organic framework materials
    Hupp, Joseph
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2010, 240
  • [45] Polyoxometalate based metal-organic framework
    Duan, Chunying
    ACTA CRYSTALLOGRAPHICA A-FOUNDATION AND ADVANCES, 2017, 73 : C1088 - C1088
  • [46] Electronic metal-organic framework sensors
    Chidambaram, Arunraj
    Stylianou, Kyriakos C.
    INORGANIC CHEMISTRY FRONTIERS, 2018, 5 (05): : 979 - 998
  • [47] Dual Metal-Organic Framework Heterointerface
    Luo, Yue
    Li, Jun
    Liu, Xiangmei
    Tan, Lei
    Cui, Zhenduo
    Feng, Xiaobo
    Yang, Xianjin
    Liang, Yanqin
    Li, Zhaoyang
    Zhu, Shengli
    Zheng, Yufeng
    Yeung, Kelvin Wai Kwok
    Yang, Cao
    Wang, Xianbao
    Wu, Shuilin
    ACS CENTRAL SCIENCE, 2019, 5 (09) : 1591 - 1601
  • [48] Metal-organic framework gels and monoliths
    Hou, Jingwei
    Sapnik, Adam F.
    Bennett, Thomas D.
    CHEMICAL SCIENCE, 2020, 11 (02) : 310 - 323
  • [49] Negative compressibility of a metal-organic framework?
    Sobczak, Szymon
    Katrusiak, Andrzej
    ACTA CRYSTALLOGRAPHICA A-FOUNDATION AND ADVANCES, 2018, 74 : E365 - E366
  • [50] Multiferroic homochiral metal-organic framework
    Ye, Qiong
    Fu, Da-Wei
    Tian, Hang
    Xiong, Ren-Gen
    Chan, Philip Wai Hong
    Huang, Songping D.
    INORGANIC CHEMISTRY, 2008, 47 (03) : 772 - 774