The affine Grassmannian and the Springer resolution in positive characteristic

被引:12
|
作者
Achar, Pramod N. [1 ]
Rider, Laura [2 ]
Riche, Simon [3 ]
机构
[1] Louisiana State Univ, Dept Math, Baton Rouge, LA 70803 USA
[2] MIT, Dept Math, Cambridge, MA 02139 USA
[3] Univ Blaise Pascal Clermont Ferrand II, Lab Math, CNRS, UMR 6620, Campus Univ Cezeaux, F-63177 Aubiere, France
基金
美国国家科学基金会;
关键词
affine Grassmannian; Springer resolution; Langlands duality; PERVERSE SHEAVES; KOSZUL DUALITY; QUANTUM GROUPS; FLAGS;
D O I
10.1112/S0010437X16007661
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
An important result of Arkhipov-Bezrukavnikov-Ginzburg relates constructible sheaves on the affine Grassmannian to coherent sheaves on the dual Springer resolution. In this paper, we prove a positive-characteristic analogue of this statement, using the framework of 'mixed modular sheaves' recently developed by the first author and Riche. As an application, we deduce a relationship between parity sheaves on the affine Grassmannian and Bezrukavnikov's 'exotic t-structure' on the Springer resolution.
引用
收藏
页码:2627 / 2677
页数:51
相关论文
共 50 条