The affine Grassmannian and the Springer resolution in positive characteristic

被引:12
|
作者
Achar, Pramod N. [1 ]
Rider, Laura [2 ]
Riche, Simon [3 ]
机构
[1] Louisiana State Univ, Dept Math, Baton Rouge, LA 70803 USA
[2] MIT, Dept Math, Cambridge, MA 02139 USA
[3] Univ Blaise Pascal Clermont Ferrand II, Lab Math, CNRS, UMR 6620, Campus Univ Cezeaux, F-63177 Aubiere, France
基金
美国国家科学基金会;
关键词
affine Grassmannian; Springer resolution; Langlands duality; PERVERSE SHEAVES; KOSZUL DUALITY; QUANTUM GROUPS; FLAGS;
D O I
10.1112/S0010437X16007661
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
An important result of Arkhipov-Bezrukavnikov-Ginzburg relates constructible sheaves on the affine Grassmannian to coherent sheaves on the dual Springer resolution. In this paper, we prove a positive-characteristic analogue of this statement, using the framework of 'mixed modular sheaves' recently developed by the first author and Riche. As an application, we deduce a relationship between parity sheaves on the affine Grassmannian and Bezrukavnikov's 'exotic t-structure' on the Springer resolution.
引用
收藏
页码:2627 / 2677
页数:51
相关论文
共 50 条
  • [1] Reductive groups, the loop Grassmannian, and the Springer resolution
    Pramod N. Achar
    Simon Riche
    Inventiones mathematicae, 2018, 214 : 289 - 436
  • [2] Quantum groups, the loop Grassmannian, and the Springer resolution
    Arkhipov, S
    Bezrukavnikov, R
    Ginzburg, V
    JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 2004, 17 (03) : 595 - 678
  • [3] Reductive groups, the loop Grassmannian, and the Springer resolution
    Achar, Pramod N.
    Riche, Simon
    INVENTIONES MATHEMATICAE, 2018, 214 (01) : 289 - 436
  • [4] Kapranov's tilting sheaf on the Grassmannian in positive characteristic
    Kaneda, Masaharu
    ALGEBRAS AND REPRESENTATION THEORY, 2008, 11 (04) : 347 - 354
  • [5] Kapranov’s Tilting Sheaf on the Grassmannian in Positive Characteristic
    Masaharu Kaneda
    Algebras and Representation Theory, 2008, 11 : 347 - 354
  • [6] The Grassmannian of affine subspaces
    Lim, Lek-Heng
    Wong, Ken Sze-Wai
    Ye, Ke
    FOUNDATIONS OF COMPUTATIONAL MATHEMATICS, 2021, 21 (02) : 537 - 574
  • [7] Dynamically affine maps in positive characteristic
    Byszewski, Jakub
    Cornelissen, Gunther
    Houben, Marc
    van der Meijden, Lois
    DYNAMICS: TOPOLOGY AND NUMBERS, 2020, 744 : 125 - 156
  • [8] The Grassmannian of affine subspaces
    Lek-Heng Lim
    Ken Sze-Wai Wong
    Ke Ye
    Foundations of Computational Mathematics, 2021, 21 : 537 - 574
  • [9] Affine anabelian curves in positive characteristic
    Stix, J
    COMPOSITIO MATHEMATICA, 2002, 134 (01) : 75 - 85
  • [10] The ξ-stability on the affine grassmannian
    Chen, Zongbin
    MATHEMATISCHE ZEITSCHRIFT, 2015, 280 (3-4) : 1163 - 1184