On a second order residual estimator for nonlinear conservation laws

被引:0
|
作者
Sonar, T [1 ]
Thomas, I [1 ]
机构
[1] Tech Univ Carolo Wilhelmina Braunschweig, Inst Anal, D-38106 Braunschweig, Germany
关键词
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we suggest a new technique for the numerical computation of the local residual of nonlinear hyperbolic conservation laws. This techniques relies on a discrete regularization of the numerical data.
引用
收藏
页码:863 / 871
页数:9
相关论文
共 50 条
  • [21] On the symmetry classification and conservation laws for quasilinear differential equations of second order
    Yu. A. Chirkunov
    Mathematical Notes, 2010, 87 : 115 - 121
  • [22] On the symmetry classification and conservation laws for quasilinear differential equations of second order
    Chirkunov, Yu. A.
    MATHEMATICAL NOTES, 2010, 87 (1-2) : 115 - 121
  • [23] Conservation laws for second-order parabolic partial differential equations
    Van Brunt, B
    Pidgeon, D
    Vlieg-Hulstman, M
    Halford, WD
    ANZIAM JOURNAL, 2004, 45 : 333 - 348
  • [24] High Order Residual Distribution for Steady State Problems for Hyperbolic Conservation Laws
    Jianfang Lin
    Rémi Abgrall
    Jianxian Qiu
    Journal of Scientific Computing, 2019, 79 : 891 - 913
  • [25] High Order Residual Distribution for Steady State Problems for Hyperbolic Conservation Laws
    Lin, Jianfang
    Abgrall, Remi
    Qiu, Jianxian
    JOURNAL OF SCIENTIFIC COMPUTING, 2019, 79 (02) : 891 - 913
  • [26] An optimal order estimate for nonlinear hyperbolic conservation laws in two variables
    Li, JC
    APPLIED MATHEMATICS LETTERS, 2000, 13 (03) : 85 - 89
  • [27] Negative-Order Norm Estimates for Nonlinear Hyperbolic Conservation Laws
    Liangyue Ji
    Yan Xu
    Jennifer K Ryan
    Journal of Scientific Computing, 2013, 54 : 531 - 548
  • [28] Negative-Order Norm Estimates for Nonlinear Hyperbolic Conservation Laws
    Ji, Liangyue
    Xu, Yan
    Ryan, Jennifer K.
    JOURNAL OF SCIENTIFIC COMPUTING, 2013, 54 (2-3) : 531 - 548
  • [29] Construction of second-order TVD schemes for nonhomogeneous hyperbolic conservation laws
    Gascón, L
    Corberán, JM
    JOURNAL OF COMPUTATIONAL PHYSICS, 2001, 172 (01) : 261 - 297
  • [30] Convergence of a second-order scheme for non-local conservation laws
    Veerappa Gowda, G. D.
    Kenettinkara, Sudarshan Kumar
    Manoj, Nikhil
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS, 2023, 57 (06) : 3439 - 3481