Separating polarized cosmological and galactic emissions for cosmic microwave background B-mode polarization experiments

被引:12
|
作者
Stivoli, Federico
Baccigalupi, Carlo
Maino, Davide
Stompor, Radek
机构
[1] SISSA, ISAS, Astrophys Sector, I-34014 Trieste, Italy
[2] Univ Heidelberg, Inst Theoret Astrophys, D-69120 Heidelberg, Germany
[3] Ist Nazl Fis Nucl, Sez Trieste, I-34014 Trieste, Italy
[4] Lawrence Berkeley Natl Lab, Div Phys, Berkeley, CA 94720 USA
[5] Univ Milan, Dipartimento Fis, I-20133 Milan, Italy
[6] Lawrence Berkeley Natl Lab, Computat Res Div, Berkeley, CA 94720 USA
[7] Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA
[8] Univ Paris 07, Lab Astropart & Cosmol, Paris, France
关键词
methods : data analysis; techniques : image processing; cosmic microwave background;
D O I
10.1111/j.1365-2966.2006.10769.x
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
The detection and characterization of the B mode of cosmic microwave background (CMB) polarization anisotropies will not be possible without a high-precision removal of the foreground contamination present in the microwave band. In this work, we study the relevance of the component-separation technique based on the Independent Component Analysis (ICA) for this purpose and investigate its performance in the context of a limited sky coverage observation and from the viewpoint of our ability to differentiate between cosmological models with different primordial B-mode content. We focus on the low Galactic emission sky patch centred at 40 degrees in right ascension and -45 in declination, corresponding to the target of several operating and planned CMB experiments and which, in many respects, adequately represents a typical 'clean' high-latitude sky. We consider two fiducial observations, one operating at low (40, 90 GHz) frequencies and one at high (150, 350 GHz) frequencies and thus dominated by the synchrotron and thermal dust emission, respectively. We use foreground templates simulated in accordance with the existing observations in the radio and infrared bands, as well as the Wilkinson Microwave Anisotropy Probe (WMAP) and Archeops data and model the CMB emission adopting the current best-fitting cosmological model, with an amplitude of primordial gravitational waves set to either zero or 10 per cent. We use a parallel version of the FASTICA code to explore a substantial parameter space including Gaussian pixel noise level, observed sky area and the amplitude of the foreground emission and employ large Monte Carlo simulations to quantify errors and biases pertinent to the reconstruction for different choices of the parameter values. We identify a large subspace of the parameter space for which the quality of the CMB reconstruction is excellent, i.e. where the errors and biases introduced by the separation are found to be comparable or lower than the uncertainty due to the cosmic variance and instrumental noise. For both the cosmological models, with and without the primordial gravitational waves, we find that FASTICA performs extremely well even in the cases when the B-mode CMB signal is up to a few times weaker than the foreground contamination and the noise amplitude is comparable with the total CMB polarized emission. In addition, we discuss limiting cases of the noise and foreground amplitudes, for which the ICA approach fails. Although our conclusions are limited by the absence of systematics in the simulated data, these results indicate that these component-separation techniques could play a crucial role in the forthcoming experiments aiming at the detection of B modes in the CMB polarization.
引用
收藏
页码:615 / 629
页数:15
相关论文
共 50 条
  • [21] MEASURING COSMOLOGICAL PARAMETERS WITH COSMIC MICROWAVE BACKGROUND EXPERIMENTS
    BOND, JR
    CRITTENDEN, R
    DAVIS, RL
    EFSTATHIOU, G
    STEINHARDT, PJ
    PHYSICAL REVIEW LETTERS, 1994, 72 (01) : 13 - 16
  • [22] Overview of Cosmic Microwave Background polarization experiments
    Timbie, PT
    Gundersen, JO
    Keating, BG
    AMIBA 2001: HIGH-Z CLUSTERS, MISSING BARYONS, AND CMB POLARIZATION, PROCEEDINGS, 2002, 257 : 235 - 242
  • [23] NEW CONSTRAINTS ON COSMIC POLARIZATION ROTATION FROM THE ACTPol COSMIC MICROWAVE BACKGROUND B-MODE POLARIZATION OBSERVATION AND THE BICEP2 CONSTRAINT UPDATE
    Mei, Hsien-Hao
    Ni, Wei-Tou
    Pan, Wei-Ping
    Xu, Lixin
    Alighieri, Sperello di Serego
    ASTROPHYSICAL JOURNAL, 2015, 805 (02):
  • [24] A polarized synchrotron template for cosmic microwave background polarization experiments based on WMAP data
    Bernardi, G
    Carretti, E
    Fabbri, R
    Sbarra, C
    Poppi, S
    Cortiglioni, S
    Jonas, JL
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2004, 351 (02) : 436 - 446
  • [25] Polarization of the atmosphere as a foreground for cosmic microwave background polarization experiments
    Hanany, S
    Rosenkranz, P
    NEW ASTRONOMY REVIEWS, 2003, 47 (11-12) : 1159 - 1165
  • [26] The effect of a scanning flat fold mirror on a cosmic microwave background B-mode experiment
    Grainger, William F.
    North, Chris E.
    Ade, Peter. A. R.
    REVIEW OF SCIENTIFIC INSTRUMENTS, 2011, 82 (06):
  • [27] Efficiency of pseudospectrum methods for estimation of the cosmic microwave background B-mode power spectrum
    Ferte, A.
    Grain, J.
    Tristram, M.
    Stompor, R.
    PHYSICAL REVIEW D, 2013, 88 (02)
  • [28] MEASUREMENTS OF SUB-DEGREE B-MODE POLARIZATION IN THE COSMIC MICROWAVE BACKGROUND FROM 100 SQUARE DEGREES OF SPTPOL DATA
    Keisler, R.
    Hoover, S.
    Harrington, N.
    Henning, J. W.
    Ade, P. A. R.
    Aird, K. A.
    Austermann, J. E.
    Beall, J. A.
    Bender, A. N.
    Benson, B. A.
    Bleem, L. E.
    Carlstrom, J. E.
    Chang, C. L.
    Chiang, H. C.
    Cho, H-M.
    Citron, R.
    Crawford, T. M.
    Crites, A. T.
    de Haan, T.
    Dobbs, M. A.
    Everett, W.
    Gallicchio, J.
    Gao, J.
    George, E. M.
    Gilbert, A.
    Halverson, N. W.
    Hanson, D.
    Hilton, G. C.
    Holder, G. P.
    Holzapfel, W. L.
    Hou, Z.
    Hrubes, J. D.
    Huang, N.
    Hubmayr, J.
    Irwin, K. D.
    Knox, L.
    Lee, A. T.
    Leitch, E. M.
    Li, D.
    Luong-Van, D.
    Marrone, D. P.
    McMahon, J. J.
    Mehl, J.
    Meyer, S. S.
    Mocanu, L.
    Natoli, T.
    Nibarger, J. P.
    Novosad, V.
    Padin, S.
    Pryke, C.
    ASTROPHYSICAL JOURNAL, 2015, 807 (02):
  • [29] A Measurement of the Cosmic Microwave Background B-mode Polarization Power Spectrum at Subdegree Scales from Two Years of POLARBEAR Data
    Ade, P. A. R.
    Aguilar, M.
    Akiba, Y.
    Arnold, K.
    Baccigalupi, C.
    Barron, D.
    Beck, D.
    Bianchini, F.
    Boettger, D.
    Borrill, J.
    Chapman, S.
    Chinone, Y.
    Crowley, K.
    Cukierman, A.
    Dunner, R.
    Dobbs, M.
    Ducout, A.
    Elleflot, T.
    Errard, J.
    Fabbian, G.
    Feeney, S. M.
    Feng, C.
    Fujino, T.
    Galitzki, N.
    Gilbert, A.
    Goeckner-Wald, N.
    Groh, J. C.
    Hall, G.
    Halverson, N.
    Hamada, T.
    Hasegawa, M.
    Hazumi, M.
    Hill, C. A.
    Howe, L.
    Inoue, Y.
    Jaehnig, G.
    Jaffe, A. H.
    Jeong, O.
    Kaneko, D.
    Katayama, N.
    Keating, B.
    Keskitalo, R.
    Kisner, T.
    Krachmalnicoff, N.
    Kusaka, A.
    Le Jeune, M.
    Lee, A. T.
    Leitch, E. M.
    Leon, D.
    Linder, E.
    ASTROPHYSICAL JOURNAL, 2017, 848 (02):
  • [30] Astrophysical foregrounds and primordial tensor-to-scalar ratio constraints from cosmic microwave background B-mode polarization observations
    Errard, J.
    Stompor, R.
    PHYSICAL REVIEW D, 2012, 85 (08):