Multispectral photoacoustic imaging for the detection of subclinical melanoma

被引:11
|
作者
Sinnamon, Andrew J. [1 ]
Neuwirth, Madalyn G. [1 ]
Song, Yun [1 ]
Schultz, Susan M. [2 ]
Liu, Shujing [3 ]
Xu, Xiaowei [3 ]
Sehgal, Chandra M. [2 ]
Karakousis, Giorgos C. [1 ]
机构
[1] Univ Penn, Dept Surg, Philadelphia, PA 19104 USA
[2] Univ Penn, Dept Radiol, Philadelphia, PA 19104 USA
[3] Univ Penn, Dept Pathol, Philadelphia, PA 19104 USA
关键词
detection; lymph node; melanoma; photoacoustic; ultrasound; LYMPH-NODE BIOPSY; IN-VIVO; TOMOGRAPHY; METASTASES; MICROSCOPY;
D O I
10.1002/jso.25447
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Background Photoacoustic imaging (PAI) is a noninvasive technique for melanin detection within melanoma metastases. While ex vivo and early studies suggest promising clinical application, there are no standardized parameters for defining presence of melanoma metastases. Methods Following flank/hindlimb melanoma induction in BRaf-PTEN transgenic mice, bilateral inguinal lymph nodes (LN) were imaged in vivo at 4 to 8 weeks using PAI. Fourteen diagnostic parameters for in vivo detection of LN metastases were compared using the receiver operating characteristic and area-under-the-curve (AUC). Limits of detectability were assessed in ex vivo and in vitro phantom studies. Results Forty-nine LNs were imaged in 25 mice. Among metastatic LNs, tumor size ranged from scattered cells to 2.8 mm. The strongest predictor of LN metastasis was the ratio of peak 10% PA melanin signal in the LN compared with adjacent soft tissue (median 4.22 for positive LNs vs 1.07 for negative LNs, P < 0.0001). The AUC was 0.95 (95% CI, 0.90-1.00). In phantom studies, B16 tumor cells were detectable at a concentration of 10 to 25 cells/mu L and at a tissue depth of 2.5-3 cm. Conclusions We identified a simple, objective diagnostic parameter for identifying melanoma LN metastases in vivo. These findings may help inform the design of future clinical trials.
引用
收藏
页码:1070 / 1076
页数:7
相关论文
共 50 条
  • [41] Spatial and spectral regularization to discriminate tissues using multispectral photoacoustic imaging
    Dolet, Aneline
    Varray, Francois
    Mure, Simon
    Grenier, Thomas
    Liu, Yubin
    Yuan, Zhen
    Tortoli, Piero
    Vray, Didier
    EURASIP JOURNAL ON ADVANCES IN SIGNAL PROCESSING, 2018,
  • [42] Multispectral Imaging Algorithm Predicts Breslow Thickness of Melanoma
    Bozsanyi, Szabolcs
    Varga, Noemi Nora
    Farkas, Klara
    Banvolgyi, Andras
    Lorincz, Kende
    Lihacova, Ilze
    Lihachev, Alexey
    Plorina, Emilija Vija
    Bartha, Aron
    Jobbagy, Antal
    Kuroli, Eniko
    Paragh, Gyoergy
    Hollo, Peter
    Medvecz, Marta
    Kiss, Norbert
    Wikonkal, Norbert M.
    JOURNAL OF CLINICAL MEDICINE, 2022, 11 (01)
  • [43] Multispectral imaging for the diagnosis of malignant melanoma beyond dermatoscopy
    Moncrieff, M
    SKIN AND ENVIRONMENT - PERCEPTION AND PROTECTION, VOLS 1 AND 2, 2001, : 663 - 669
  • [44] Motion Compensation for 3D Multispectral Handheld Photoacoustic Imaging
    Yoon, Chiho
    Lee, Changyeop
    Shin, Keecheol
    Kim, Chulhong
    BIOSENSORS-BASEL, 2022, 12 (12):
  • [45] Polyacrylamide hydrogel phantoms for performance evaluation of multispectral photoacoustic imaging systems
    Hariri, Ali
    Palma-Chavez, Jorge
    Wear, Keith A.
    Pfefer, T. Joshua
    Jokerst, Jesse V.
    Vogt, William C.
    PHOTOACOUSTICS, 2021, 22
  • [46] Wide-field multispectral photoacoustic imaging of human melanomas in vivo
    Park, Byullee
    Bang, Chul Hwan
    Lee, Changyeop
    Han, Ju Hee
    Kim, Jeesu
    Choi, Wonseok
    Park, Gyeong Sin
    Rhie, Jong Won
    Lee, Ji Hyun
    Kim, Chulhong
    PHOTONS PLUS ULTRASOUND: IMAGING AND SENSING 2020, 2020, 11240
  • [47] MULTISPECTRAL PHOTOACOUSTIC IMAGING DIFFERENTIATES RENAL CELL CARCINOMA FROM ONCOCYTOMA
    Liang, Lorraine
    Chinni, Bhargava
    Jean-Gilles, Jerome
    Messing, Edward
    Wu, Guan
    Rao, Navalgund
    Dogra, Vikram
    JOURNAL OF UROLOGY, 2016, 195 (04): : E203 - E203
  • [48] Spatial and spectral regularization to discriminate tissues using multispectral photoacoustic imaging
    Aneline Dolet
    François Varray
    Simon Mure
    Thomas Grenier
    Yubin Liu
    Zhen Yuan
    Piero Tortoli
    Didier Vray
    EURASIP Journal on Advances in Signal Processing, 2018
  • [49] An interventional multispectral photoacoustic imaging platform for the guidance of minimally invasive procedures
    Xia, Wenfeng
    Nikitichev, Daniil I.
    Mari, Jean Martial
    West, Simeon J.
    Ourselin, Sebastien
    Beard, Paul C.
    Desjardins, Adrien E.
    OPTO-ACOUSTIC METHODS AND APPLICATIONS IN BIOPHOTONICS II, 2015, 9539
  • [50] Delineating melanoma using multispectral polarized light imaging
    Tannous, Zeina
    Mukherjee, Sonali
    Al-Arashi, Munir Y.
    Yaroslavsky, Anna N.
    LASERS IN SURGERY AND MEDICINE, 2008, : 18 - 18