Effect of the Solvate Environment of Lithium Cations on the Resistance of the Polymer Electrolyte/Electrode Interface in a Solid-State Lithium Battery

被引:5
|
作者
Chernyak, Alexander, V [1 ,2 ]
Slesarenko, Nikita A. [1 ]
Slesarenko, Anna A. [1 ]
Baymuratova, Guzaliya R. [1 ]
Tulibaeva, Galiya Z. [1 ]
Yudina, Alena, V [1 ]
Volkov, Vitaly, I [1 ,2 ]
Shestakov, Alexander F. [1 ,3 ]
Yarmolenko, Olga, V [1 ]
机构
[1] Fed Res Ctr Problems Chem Phys & Med Chem RAS, Chernogolovka 142432, Russia
[2] Sci Ctr Chernogolovka RAS, Chernogolovka 142432, Russia
[3] Moscow MV Lomonosov State Univ, Fac Fundamental Phys & Chem Engn, Moscow 119991, Russia
关键词
polymer electrolyte; nanocomposite; organic electrolyte; solid-state lithium battery; solvate shell; NMR; self-diffusion coefficients; chemical shifts; quantum chemical modeling; ION-PAIR FORMATION; GEL ELECTROLYTE; NANOCOMPOSITE; TRANSPORT; CONDUCTIVITY; DIACRYLATE; DIFFUSION; FEATURES; CONTACT; SOLVENT;
D O I
10.3390/membranes12111111
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The effect of the composition of liquid electrolytes in the bulk and at the interface with the LiFePO4 cathode on the operation of a solid-state lithium battery with a nanocomposite polymer gel electrolyte based on polyethylene glycol diacrylate and SiO2 was studied. The self-diffusion coefficients on the 7Li, 1H, and 19F nuclei in electrolytes based on LiBF4 and LiTFSI salts in solvents (gamma-butyrolactone, dioxolane, dimethoxyethane) were measured by nuclear magnetic resonance (NMR) with a magnetic field gradient. Four compositions of the complex electrolyte system were studied by high-resolution NMR. The experimentally obtained H-1 chemical shifts are compared with those theoretically calculated by quantum chemical modeling. This made it possible to suggest the solvate shell compositions that facilitate the rapid transfer of the Li+ cation at the nanocomposite electrolyte/LiFePO4 interface and ensure the stable operation of a solid-state lithium battery.
引用
收藏
页数:16
相关论文
共 50 条
  • [21] A lithium superionic conductor as a new solid-state battery electrolyte
    Sur, Ujjal Kumar
    CURRENT SCIENCE, 2011, 101 (09): : 1129 - 1130
  • [22] Stable interface of a high-energy solid-state lithium metal battery via a sandwich composite polymer electrolyte
    Li, Boyu
    Su, Qingmei
    Liu, Chengkun
    Wang, Qiushi
    Zhang, Miao
    Ding, Shukai
    Du, Gaohui
    Xu, Bingshe
    JOURNAL OF POWER SOURCES, 2021, 496
  • [23] Interface in Solid-State Lithium Battery: Challenges, Progress, and Outlook
    Peryez, Syed Atif
    Cambaz, Musa Ali
    Thangadurai, Venkataraman
    Fichtnert, Maximilian
    ACS APPLIED MATERIALS & INTERFACES, 2019, 11 (25) : 22029 - 22050
  • [24] Stabilize garnet/electrode interface via low-melting polymer layer in solid-state lithium metal battery
    Chen, Hong
    Bai, Fan
    Li, Yingxiang
    Deng, Junwen
    Liao, Shijun
    Zhang, Tao
    ELECTROCHIMICA ACTA, 2022, 429
  • [25] Development of solid polymer electrolytes for solid-state lithium battery applications
    Li, Jieyan
    Chen, Xin
    Muhammad, Saz
    Roy, Shubham
    Huang, Haiyan
    Yu, Chen
    Ullah, Zia
    Wang, Zeru
    Zhang, Yinghe
    Wang, Ke
    Guo, Bing
    MATERIALS TODAY ENERGY, 2024, 43
  • [26] Modification of Cathode/Electrolyte Interface in Solid State Lithium Battery by PEO
    Chen, Linhui
    Wang, Chang'an
    Xiyou Jinshu Cailiao Yu Gongcheng/Rare Metal Materials and Engineering, 2020, 49 (02): : 600 - 604
  • [27] Modification of Cathode/Electrolyte Interface in Solid State Lithium Battery by PEO
    Chen Linhui
    Wang Chang'an
    RARE METAL MATERIALS AND ENGINEERING, 2020, 49 (02) : 600 - 604
  • [28] A Solid-State Lithium Battery with PVDF-HFP-Modified Fireproof Ionogel Polymer Electrolyte
    Tang, YiFan
    Xiong, Yuchuan
    Wu, Liping
    Xiong, Xin
    Me, Tao
    Wang, Xianbao
    ACS APPLIED ENERGY MATERIALS, 2023, 6 (07) : 4016 - 4026
  • [29] Bikitaite composite polymer electrolyte for high-performance solid-state lithium metal battery
    Afrifah V.A.
    Kim J.
    Phiri I.
    Ryou S.-Y.
    Journal of Industrial and Engineering Chemistry, 2023, 128 : 412 - 419
  • [30] Novel All Solid-state Polymer Electrolytes for Lithium Battery
    Hui Jiang Shibi Fang Institute of Chemistry Chinese Academy of Sciences Beijing China
    复旦学报(自然科学版), 2005, (05) : 136 - 137