Radio Modulation Classification Using Deep Residual Neural Networks

被引:2
|
作者
Abbas, Adeeb [1 ]
Pano, Vasil [1 ]
Mainland, Geoffrey [2 ]
Dandekar, Kapil [1 ]
机构
[1] Drexel Univ, Elect & Comp Engn, Philadelphia, PA 19104 USA
[2] Drexel Univ, Coll Comp & Informat, Philadelphia, PA 19104 USA
基金
美国国家科学基金会;
关键词
machine learning; convolution networks; deep learning; modulation recognition; radio frequency; RECOGNITION;
D O I
10.1109/MILCOM55135.2022.10017640
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We propose a new deep residual network for Automatic Modulation Classification, OPResNet-18. It achieves state-of-the-art accuracy on the RadioML 2016.10a data set. We train the proposed model and other state-of-the-art networks with augmented data by adding a Carrier Frequency Offset (CFO). We find that the previously proposed IQNet-3 is robust to CFO. We demonstrate that this robustness allows the performance of IQNet-3 to be further improved through data augmentation in contrast to existing neural networks that cannot handle CFO. Finally, we provide evidence that standard data pre-processing techniques for time-domain data that reportedly perform well in many domains do not perform as well as a simple alternative, the outer product, in the IQ domain.
引用
收藏
页数:7
相关论文
共 50 条
  • [41] Radio Modulation Classification Optimization Using Combinatorial Deep Learning Technique
    Elkhatib, Ziad
    Kamalov, Firuz
    Moussa, Sherif
    Ben Mnaouer, Adel
    Yagoub, Mustapha C. E.
    Yanikomeroglu, Halim
    IEEE ACCESS, 2024, 12 : 17552 - 17570
  • [42] Automatic Modulation Classification Using Fractional Low Order Cyclic Spectrum and Deep Residual Networks in Impulsive Noise
    Ma, Jitong
    Jiang, Fan
    2021 IEEE MTT-S INTERNATIONAL WIRELESS SYMPOSIUM (IWS 2021), 2021,
  • [43] Deep limits of residual neural networks
    Thorpe, Matthew
    van Gennip, Yves
    RESEARCH IN THE MATHEMATICAL SCIENCES, 2023, 10 (01)
  • [44] Deep Learning-Based Automatic Modulation Classification Using Robust CNN Architecture for Cognitive Radio Networks
    Abd-Elaziz, Ola Fekry
    Abdalla, Mahmoud
    Elsayed, Rania A.
    SENSORS, 2023, 23 (23)
  • [45] A robust modulation classification method using convolutional neural networks
    Siyang Zhou
    Zhendong Yin
    Zhilu Wu
    Yunfei Chen
    Nan Zhao
    Zhutian Yang
    EURASIP Journal on Advances in Signal Processing, 2019
  • [46] A robust modulation classification method using convolutional neural networks
    Zhou, Siyang
    Yin, Zhendong
    Wu, Zhilu
    Chen, Yunfei
    Zhao, Nan
    Yang, Zhutian
    EURASIP JOURNAL ON ADVANCES IN SIGNAL PROCESSING, 2019, 2019 (1)
  • [47] Steel Surface Defect Classification Using Deep Residual Neural Network
    Konovalenko, Ihor
    Maruschak, Pavlo
    Brezinova, Janette
    Vinas, Jan
    Brezina, Jakub
    METALS, 2020, 10 (06) : 1 - 15
  • [48] Deep Learning-Based Robust Automatic Modulation Classification for Cognitive Radio Networks
    Kim, Seung-Hwan
    Kim, Jae-Woo
    Nwadiugwu, Williams-Paul
    Kim, Dong-Seong
    IEEE ACCESS, 2021, 9 : 92386 - 92393
  • [49] Knowledge Embedding Networks Based on Deep Learning for Automatic Modulation Classification in Cognitive Radio
    Zhang, Duona
    Lu, Yuanyao
    Ding, Wenrui
    Li, Yundong
    IEEE TRANSACTIONS ON COMMUNICATIONS, 2024, 72 (12) : 7814 - 7825
  • [50] Type recognition of the digital modulation of radio signals using neural networks
    S. S. Adzhemov
    M. V. Tereshonok
    D. S. Chirov
    Moscow University Physics Bulletin, 2015, 70 : 22 - 27