Radio Modulation Classification Using Deep Residual Neural Networks

被引:2
|
作者
Abbas, Adeeb [1 ]
Pano, Vasil [1 ]
Mainland, Geoffrey [2 ]
Dandekar, Kapil [1 ]
机构
[1] Drexel Univ, Elect & Comp Engn, Philadelphia, PA 19104 USA
[2] Drexel Univ, Coll Comp & Informat, Philadelphia, PA 19104 USA
基金
美国国家科学基金会;
关键词
machine learning; convolution networks; deep learning; modulation recognition; radio frequency; RECOGNITION;
D O I
10.1109/MILCOM55135.2022.10017640
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We propose a new deep residual network for Automatic Modulation Classification, OPResNet-18. It achieves state-of-the-art accuracy on the RadioML 2016.10a data set. We train the proposed model and other state-of-the-art networks with augmented data by adding a Carrier Frequency Offset (CFO). We find that the previously proposed IQNet-3 is robust to CFO. We demonstrate that this robustness allows the performance of IQNet-3 to be further improved through data augmentation in contrast to existing neural networks that cannot handle CFO. Finally, we provide evidence that standard data pre-processing techniques for time-domain data that reportedly perform well in many domains do not perform as well as a simple alternative, the outer product, in the IQ domain.
引用
收藏
页数:7
相关论文
共 50 条
  • [1] ARRHYTHMIA CLASSIFICATION USING DEEP RESIDUAL NEURAL NETWORKS
    Shi, Zhenghao
    Yin, Zhiyan
    Ren, Xiaoyong
    Liu, Haiqin
    Chen, Jingguo
    Hei, Xinhong
    Luo, Jing
    You, Zhenzhen
    Zhao, Minghua
    JOURNAL OF MECHANICS IN MEDICINE AND BIOLOGY, 2021, 21 (10)
  • [2] FULLY AUTOMATED CLASSIFICATION OF MAMMOGRAMS USING DEEP RESIDUAL NEURAL NETWORKS
    Dhungel, Neeraj
    Carneiro, Gustavo
    Bradley, Andrew P.
    2017 IEEE 14TH INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING (ISBI 2017), 2017, : 310 - 314
  • [3] Automatic Concurrent Arrhythmia Classification Using Deep Residual Neural Networks
    Nankani, Deepankar
    Saikia, Pallabi
    Baruah, Rashmi Dutta
    2020 COMPUTING IN CARDIOLOGY, 2020,
  • [4] Automatic Modulation Classification with Deep Neural Networks
    Harper, Clayton A.
    Thornton, Mitchell A.
    Larson, Eric C.
    ELECTRONICS, 2023, 12 (18)
  • [5] Pattern Recognition of Modulation Signal Classification Using Deep Neural Networks
    Venugopal, D.
    Mohan, V
    Ramesh, S.
    Janupriya, S.
    Lim, Sangsoon
    Kadry, Seifedine
    COMPUTER SYSTEMS SCIENCE AND ENGINEERING, 2022, 43 (02): : 545 - 558
  • [6] SlumberNet: deep learning classification of sleep stages using residual neural networks
    Pawan K. Jha
    Utham K. Valekunja
    Akhilesh B. Reddy
    Scientific Reports, 14
  • [7] SlumberNet: deep learning classification of sleep stages using residual neural networks
    Jha, Pawan K.
    Valekunja, Utham K.
    Reddy, Akhilesh B.
    SCIENTIFIC REPORTS, 2024, 14 (01)
  • [8] Deep Sparse Learning for Automatic Modulation Classification Using Recurrent Neural Networks
    Zang, Ke
    Wu, Wenqi
    Luo, Wei
    SENSORS, 2021, 21 (19)
  • [9] Radio Modulation Classification Using Deep Learning Architectures
    Pijackova, Kristyna
    Gotthans, Tomas
    2021 31ST INTERNATIONAL CONFERENCE RADIOELEKTRONIKA (RADIOELEKTRONIKA), 2021,
  • [10] Segmentation-Free Cell Phenotype Classification using Deep Residual Neural Networks
    Lao, Qicheng
    Sun, Haoran
    Fevens, Thomas
    PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION AND ARTIFICIAL INTELLIGENCE (ICPRAI 2018), 2018, : 72 - 77