Bounds on certain classes of Kronecker and q-binomial coefficients

被引:13
|
作者
Pak, Igor [1 ]
Panova, Greta [2 ]
机构
[1] Univ Calif Los Angeles, Dept Math, Los Angeles, CA 90095 USA
[2] Univ Penn, Dept Math, Philadelphia, PA 19103 USA
基金
美国国家科学基金会;
关键词
Kronecker coefficients of the; symmetric group; q-binomial coefficients; Partitions asymptotics; Irreducible characters; Alternating group; STRICT UNIMODALITY; PARTITIONS; PRODUCTS; CHARACTERS; PROOF;
D O I
10.1016/j.jcta.2016.10.004
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We present a lower bound on the Kronecker coefficients for tensor squares of the symmetric group via the characters of S-n, which we apply to obtain various explicit estimates. Notably, we extend Sylvester's unimodality of q-binomial coefficients ((n)(k)) as polynomials in q to derive sharp bounds on the differences of their consecutive coefficients. We then derive effective asymptotic lower bounds for a wider class of Kronecker coefficients. (C) 2016 Elsevier Inc. All rights reserved.
引用
收藏
页码:1 / 17
页数:17
相关论文
共 50 条
  • [1] Upper bounds and asymptotics for the q-binomial coefficients
    Kirousis, LM
    Stamatiou, YC
    Vamvakari, M
    STUDIES IN APPLIED MATHEMATICS, 2001, 107 (01) : 43 - 62
  • [2] A CONGRUENCE ON Q-BINOMIAL COEFFICIENTS
    Xu, Jie-Hong
    Zhao, Bao-Zhu
    2012 INTERNATIONAL CONFERENCE ON WAVELET ACTIVE MEDIA TECHNOLOGY AND INFORMATION PROCESSING (LCWAMTIP), 2012, : 390 - 393
  • [3] Factors of certain sums involving central q-binomial coefficients
    Victor J. W. Guo
    Su-Dan Wang
    Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas, 2022, 116
  • [4] Factors of certain sums involving central q-binomial coefficients
    Guo, Victor J. W.
    Wang, Su-Dan
    REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2022, 116 (01)
  • [5] DIVISIBILITY OF CERTAIN SUMS INVOLVING CENTRAL q-BINOMIAL COEFFICIENTS
    Chen, Yifan
    Wang, Xiaoxia
    ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2024, 54 (05) : 1291 - 1298
  • [6] SOME q-BINOMIAL COEFFICIENTS
    Shannon, A. G.
    NOTES ON NUMBER THEORY AND DISCRETE MATHEMATICS, 2006, 12 (01) : 13 - 20
  • [7] ON ALTERNATING SUMS OF BINOMIAL AND q-BINOMIAL COEFFICIENTS
    El Bachraoui, Mohamed
    ARS COMBINATORIA, 2020, 151 : 257 - 272
  • [8] Perfect powers in q-binomial coefficients
    Luca, Florian
    ACTA ARITHMETICA, 2012, 151 (03) : 279 - 292
  • [9] Congruences on sums of q-binomial coefficients
    Liu, Ji-Cai
    Petrov, Fedor
    ADVANCES IN APPLIED MATHEMATICS, 2020, 116 (116)
  • [10] An overpartition analogue of the q-binomial coefficients
    Jehanne Dousse
    Byungchan Kim
    The Ramanujan Journal, 2017, 42 : 267 - 283