Testing Euclidean Minimum Spanning Trees in the Plane

被引:8
|
作者
Czumaj, Artur [1 ,2 ]
Sohler, Christian [3 ]
机构
[1] Univ Warwick, Dept Comp Sci, Coventry CV4 7AL, W Midlands, England
[2] Univ Warwick, Ctr Discrete Math & Its Applicat, Coventry CV4 7AL, W Midlands, England
[3] Univ Bonn, Dept Comp Sci, D-53117 Bonn, Germany
基金
英国工程与自然科学研究理事会;
关键词
Euclidean minimum spanning tree; property testing; randomized algorithms;
D O I
10.1145/1367064.1367071
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Given a Euclidean graph G over a set P of n points in the plane, we are interested in verifying whether G is a Euclidean minimum spanning tree (EMST) of P or G differs from it in more than epsilon n edges. We assume that G is given in adjacency list representation and the point/vertex set P is given in an array. We present a property testing algorithm that accepts graph G if it is an EMST of P and that rejects with probability at least 2/3 if G differs from every EMST of P in more than epsilon n edges. Our algorithm runs in O(root n/epsilon . log(2)(n/epsilon)) time and has a query complexity of O(root n/epsilon . log(n/epsilon)).
引用
收藏
页数:23
相关论文
共 50 条
  • [31] Density-equalizing Euclidean minimum spanning trees for the detection of all disease cluster shapes
    Wieland, Shannon C.
    Brownstein, John S.
    Berger, Bonnie
    Mandl, Kenneth D.
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2007, 104 (22) : 9404 - 9409
  • [32] Sensitivity Analysis of Euclidean Minimum Spanning Tree
    Tournier, N.
    Puech, W.
    Subsol, G.
    Pedeboy, J-P.
    THREE-DIMENSIONAL IMAGE PROCESSING (3DIP) AND APPLICATIONS, 2010, 7526
  • [33] COMPUTING EUCLIDEAN MAXIMUM SPANNING-TREES
    MONMA, C
    PATERSON, M
    SURI, S
    YAO, F
    ALGORITHMICA, 1990, 5 (03) : 407 - 419
  • [34] Maintaining a Minimum Spanning Tree for Kinetic Autonomous Robots in 2D-Euclidean Plane
    Mandal, Chintan
    Sahu, Anil Kumar
    Agarwal, Suneeta
    ROMANIAN JOURNAL OF INFORMATION SCIENCE AND TECHNOLOGY, 2012, 15 (04): : 319 - 334
  • [35] Separator based sparsification .1. Planarity testing and minimum spanning trees
    Eppstein, D
    Galil, Z
    Italiano, GF
    Spencer, TH
    JOURNAL OF COMPUTER AND SYSTEM SCIENCES, 1996, 52 (01) : 3 - 27
  • [36] On Sorting, Heaps, and Minimum Spanning Trees
    Navarro, Gonzalo
    Paredes, Rodrigo
    ALGORITHMICA, 2010, 57 (04) : 585 - 620
  • [37] Increasing the weight of minimum spanning trees
    Frederickson, GN
    SolisOba, R
    PROCEEDINGS OF THE SEVENTH ANNUAL ACM-SIAM SYMPOSIUM ON DISCRETE ALGORITHMS, 1996, : 539 - 546
  • [38] Spanning trees with minimum weighted degrees
    Ghodsi, Mohammad
    Mahini, Hamid
    Mirjalali, Kian
    Gharan, Shayan Oveis
    R., Amin S. Sayedi
    Zadimoghaddam, Morteza
    INFORMATION PROCESSING LETTERS, 2007, 104 (03) : 113 - 116
  • [39] Geometric Minimum Spanning Trees with GEOFILTERKRUSKAL
    Chatterjee, Samidh
    Connor, Michael
    Kumar, Piyush
    EXPERIMENTAL ALGORITHMS, PROCEEDINGS, 2010, 6049 : 486 - 500
  • [40] Morphology on Graphs and Minimum Spanning Trees
    Meyer, Fernand
    Stawiaski, Jean
    MATHEMATICAL MORPHOLOGY AND ITS APPLICATION TO SIGNAL AND IMAGE PROCESSING, 2009, 5720 : 161 - 170