Nanostructured Pluronic hydrogels as bioinks for 3D bioprinting

被引:267
|
作者
Mueller, Michael [1 ]
Becher, Jana [2 ]
Schnabelrauch, Matthias [2 ]
Zenobi-Wong, Marcy [1 ]
机构
[1] ETH, Cartilage Engn Regenerat Lab, CH-8093 Zurich, Switzerland
[2] INNOVENT eV Jena, Biomat Dept, D-07745 Jena, Germany
关键词
bioprinting; tissue engineering; thermoresponsive polymer; Pluronic; nanostructuring; CHONDROGENIC DIFFERENTIATION; HYALURONIC-ACID; STEM-CELLS; TISSUE; CARTILAGE; CHONDROCYTES; ALGINATE; CULTURE; CONSTRUCTS; COPOLYMERS;
D O I
10.1088/1758-5090/7/3/035006
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Bioprinting is an emerging technology in the field of tissue engineering as it allows the precise positioning of biologically relevant materials in 3D, which more resembles the native tissue in our body than current homogenous, bulk approaches. There is however a lack of materials to be used with this technology and materials such as the block copolymer Pluronic have good printing properties but do not allow long-term cell culture. Here we present an approach called nanostructuring to increase the biocompatibility of Pluronic gels at printable concentrations. By mixing acrylated with unmodified Pluronic F127 it was possible to maintain the excellent printing properties of Pluronic and to create stable gels via UV crosslinking. By subsequent elution of the unmodified Pluronic from the crosslinked network we were able to increase the cell viability of encapsulated chondrocytes at day 14 from 62% for a pure acrylated Pluronic hydrogel to 86% for a nanostructured hydrogel. The mixed Pluronic gels also showed good printability when cells where included in the bioink. The nanostructured gels were, with a compressive modulus of 1.42 kPa, mechanically weak, but we were able to increase the mechanical properties by the addition of methacrylated hyaluronic acid. Our nanostructuring approach enables Pluronic hydrogels to have the desired set of properties in all stages of the bioprinting process.
引用
收藏
页数:17
相关论文
共 50 条
  • [41] Research on the printability of hydrogels in 3D bioprinting
    He, Yong
    Yang, FeiFei
    Zhao, HaiMing
    Gao, Qing
    Xia, Bing
    Fu, JianZhong
    SCIENTIFIC REPORTS, 2016, 6
  • [42] Advancing bioinks for 3D bioprinting using reactive fillers: A review
    Heid, Susanne
    Boccaccini, Aldo R.
    ACTA BIOMATERIALIA, 2020, 113 : 1 - 22
  • [43] Bioinks for 3D Bioprinting: A Scientometric Analysis of Two Decades of Progress
    Cristina Pedroza-Gonzalez, Sara
    Rodriguez-Salvador, Marisela
    Perez-Benitez, Baruc Emet
    Moises Alvarez, Mario
    Trujillo-de Santiago, Grissel
    INTERNATIONAL JOURNAL OF BIOPRINTING, 2021, 7 (02) : 68 - 91
  • [44] Effects of Processing Parameters of 3D Bioprinting on the Cellular Activity of Bioinks
    Adhikari, Jaideep
    Roy, Avinava
    Das, Anindya
    Ghosh, Manojit
    Thomas, Sabu
    Sinha, Arijit
    Kim, Jinku
    Saha, Prosenjit
    MACROMOLECULAR BIOSCIENCE, 2021, 21 (01)
  • [45] Hydrogel-Based Bioinks for 3D Bioprinting in Tissue Regeneration
    Ramiah, Previn
    du Toit, Lisa C.
    Choonara, Yahya E.
    Kondiah, Pierre P. D.
    Pillay, Viness
    FRONTIERS IN MATERIALS, 2020, 7
  • [46] 3D bioprinting scaffold using alginate/polyvinyl alcohol bioinks
    Luo, Yongxiang
    Luo, Guilin
    Gelinsky, Michael
    Huang, Peng
    Ruan, Changshun
    MATERIALS LETTERS, 2017, 189 : 295 - 298
  • [47] Short review on formulation of the bioinks for tendon and ligament 3D bioprinting
    Bagde A.
    Bansod A.
    Agrawal A.
    Raut A.
    Fulzele P.
    Quazi Syed Z.
    Materials Today: Proceedings, 2023, 80 : 2172 - 2174
  • [48] Optimization of a 3D bioprinting process using ultrashort peptide bioinks
    Khan, Zainab
    Kahin, Kowther
    Rauf, Sakandar
    Ramirez-Calderon, Gustavo
    Papagiannis, Nikolaos
    Abdulmajid, Mohammed
    Hauser, Charlotte A. E.
    INTERNATIONAL JOURNAL OF BIOPRINTING, 2019, 5 (01)
  • [49] Recent Advancements of Bioinks for 3D Bioprinting of Human Tissues and Organs
    He, Wen
    Deng, Jinjun
    Ma, Binghe
    Tao, Kai
    Zhang, Zhi
    Ramakrishna, Seeram
    Yuan, Weizheng
    Ye, Tao
    ACS APPLIED BIO MATERIALS, 2023, 7 (01) : 17 - 43
  • [50] 3D Bioprinting using UNIversal Orthogonal Network (UNION) Bioinks
    Hull, Sarah M.
    Lindsay, Christopher D.
    Brunel, Lucia G.
    Shiwarski, Daniel J.
    Tashman, Joshua W.
    Roth, Julien G.
    Myung, David
    Feinberg, Adam W.
    Heilshorn, Sarah C.
    ADVANCED FUNCTIONAL MATERIALS, 2021, 31 (07)