Optimization Strategy to Reduce Asphaltene Deposition-Associated Damage During CO2 Huff-n-Puff Injection in Shale

被引:0
|
作者
Shen, Ziqi [1 ,2 ]
Sheng, James J. [1 ]
机构
[1] Texas Tech Univ, Dept Petr Engn, Lubbock, TX 79409 USA
[2] SINOPEC Res Inst Petr Engn, Beijing, Peoples R China
关键词
CO<mml:msub><mml:mn>2</mml:mn></mml:msub> huff-n-puff injection; Enhanced oil recovery; Shale oil; Asphaltene deposition; Permeability reduction; Reservoir simulation; ENHANCED OIL-RECOVERY; RESERVOIRS; MECHANISMS;
D O I
10.1007/s13369-018-03701-w
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
CO2 huff-n-puff injection has been proved an efficient and applicable method to enhance oil recovery in shale. However, the asphaltene precipitation and deposition in such injection process have not been considered in previous studies. In this paper, a numerical reservoir simulation method was applied to mimic CO2 huff-n-puff injection process and CO2-associated asphaltene precipitation and deposition in a hydraulically fractured shale oil reservoir. Effects of CO2 huff-n-puff injection operational parameters including huff pressure, puff pressure, huff time, and puff time on asphaltene deposition and associated oil production loss were examined in detail. The numerical reservoir simulation modeling study provides a better understanding of the physical mechanisms and key parameters affecting the asphaltene deposition and the oil production loss during CO2 huff-n-puff injection in hydraulically fractured shale formation. The results show that the asphaltene precipitation and deposition behaviors in the rock matrix and fracture network are different, resulting in a difference in permeability reduction. In the fracture network, most of the asphaltene precipitation and deposition is formed during the puff period, while in the rock matrix, the asphaltene precipitation and deposition is formed during both the huff period and the puff period. It was found that optimization strategies such as reducing huff time and increasing the puff time are favorable for decreasing the reduction in oil recovery caused by asphaltene deposition; although higher huff pressure causes more reduction in oil recovery by asphaltene deposition, the oil recovery by higher pressure is still higher; thus, a higher huff pressure is preferred; similarly, although a lower pressure causes higher reduction in oil recovery by asphaltene deposition, the oil recovery by lower puff pressure is still higher; thus, a lower puff pressure is preferred. In summary, the simulation results show that the optimized principles proposed by Sheng (Petroleum 3:431-437, 2017) in the huff-n-puff CO2 injection are not changed by including asphaltene deposition. In the simulated reservoir case, the huff time and puff time should be 100days and 200days, respectively.
引用
收藏
页码:6179 / 6193
页数:15
相关论文
共 50 条
  • [31] Research on Micropore Development Characteristics and Influencing Factors during CO2 Huff-n-Puff
    Kang, Jilun
    Yang, Shenglai
    Zhang, Wei
    Zhang, Hong
    He, Changsong
    Wang, Xuechun
    Wei, Shuangbao
    Yang, Kun
    Wang, Lilong
    PROCESSES, 2024, 12 (08)
  • [32] LOWER LIMITS OF COUPLING PHYSICAL PROPERTIES OF SHALE OIL RESERVOIRS FOR THE APPLICATION OF CO2 HUFF-N-PUFF
    Wang, Peng
    Huang, Shijun
    Zhao, Fenglan
    ENERGY PRODUCTION AND MANAGEMENT IN THE 21ST CENTURY V: The Quest for Sustainable Energy, 2022, 255 : 3 - 13
  • [33] Optimization of CO2 Injection Huff and Puff Process in Shale Reservoirs Based on NMR Technology
    Gao, Yang
    Liu, Dehua
    Li, Sichen
    Cheng, Liang
    Sun, Jing
    APPLIED SCIENCES-BASEL, 2024, 14 (06):
  • [34] THE CO2 HUFF-N-PUFF PROCESS IN A BOTTOMWATER-DRIVE RESERVOIR
    SIMPSON, MR
    JOURNAL OF PETROLEUM TECHNOLOGY, 1988, 40 (07): : 887 - 893
  • [35] Research on Mechanism and Effect of Enhancing Gas Recovery by CO2 Huff-n-Puff in Shale Gas Reservoir
    Liu, Jiawei
    Xie, Mengke
    Liu, Dongchen
    Cao, Lieyan
    Xie, Shengyang
    Chang, Ying
    Zhang, Jian
    Yang, Xuefeng
    ACS OMEGA, 2024, 9 (30): : 33111 - 33118
  • [36] Shale Oil Reservoir Production Characteristics in Microscopic Pores Developed by Water/CO2 Huff-n-Puff
    Xie, Zehui
    Xiong, Yu
    Song, Zhaojie
    Chang, Jiajing
    Zhang, Kaixing
    Fan, Zhaoyu
    ENERGY & FUELS, 2025, 39 (07) : 3517 - 3527
  • [37] Performance Optimization of CO2 Huff-n-Puff for Multifractured Horizontal Wells in Tight Oil Reservoirs
    Hao, Mingqiang
    Liao, Songlin
    Yu, Guangming
    Lei, Xinhui
    Tang, Yong
    GEOFLUIDS, 2020, 2020
  • [38] Further Investigation of Effects of Injection Pressure and Imbibition Water on CO2 Huff-n-Puff Performance in Liquid-Rich Shale Reservoirs
    Li, Lei
    Sheng, James J.
    Su, Yuliang
    Zhan, Shiyuan
    ENERGY & FUELS, 2018, 32 (05) : 5789 - 5798
  • [39] Experimental and Numerical Study on CO2 Sweep Volume during CO2 Huff-n-Puff Enhanced Oil Recovery Process in Shale Oil Reservoirs
    Li, Lei
    Su, Yuliang
    Sheng, James J.
    Hao, Yongmao
    Wang, Wendong
    Lv, Yuting
    Zhao, Qingmin
    Wang, Haitao
    ENERGY & FUELS, 2019, 33 (05) : 4017 - 4032
  • [40] CO2 Utilization and Sequestration in Organic and Inorganic Nanopores During Depressurization and Huff-n-Puff Process
    Guo, Jiadong
    Kong, Shaoqi
    Li, Kunjie
    Ren, Guoan
    Yang, Tao
    Dong, Kui
    Liu, Yueliang
    NANOMATERIALS, 2024, 14 (21)