Semiclassical analysis of generic codimension 3 crossings

被引:0
|
作者
Kammerer, CF [1 ]
机构
[1] Univ Cergy Pontoise, Dept Math, F-95302 Cergy Pontoise, France
关键词
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
引用
收藏
页码:2391 / 2435
页数:45
相关论文
共 50 条
  • [21] Generic bifurcations of low codimension of planar Filippov Systems
    Guardia, M.
    Seara, T. M.
    Teixeira, M. A.
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2011, 250 (04) : 1967 - 2023
  • [22] Semiclassical suppression of weak anisotropies of a generic Universe
    Battisti, M. V.
    Belvedere, R.
    Montani, G.
    EPL, 2009, 86 (06)
  • [23] STATISTICS OF AVOIDED CROSSINGS FOR GENERIC QUANTUM-SYSTEMS
    YANG, XZ
    BURGDORFER, J
    PHYSICAL REVIEW A, 1993, 48 (01): : 83 - 87
  • [24] Shil'nikov configurations in any generic unfolding of the nilpotent singularity of codimension three on R3
    Ibáñez, S
    Rodríguez, JA
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2005, 208 (01) : 147 - 175
  • [25] Propagation through generic level crossings: A surface hopping semigroup
    Kammerer, Clotilde Fermanian
    Lasser, Caroline
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2008, 40 (01) : 103 - 133
  • [26] Semiclassical resonances for matrix Schrodinger operators with vanishing interactions at crossings of classical trajectories
    Louatron, Vincent
    REVIEWS IN MATHEMATICAL PHYSICS, 2025,
  • [27] COMPACT LEAVES OF GENERIC CODIMENSION-ONE FOLIATIONS .1.
    BONATTI, C
    FIRMO, S
    ANNALES SCIENTIFIQUES DE L ECOLE NORMALE SUPERIEURE, 1994, 27 (04): : 407 - 461
  • [28] ANALYTIC CLASSIFICATION OF GENERIC UNFOLDINGS OF ANTIHOLOMORPHIC PARABOLIC FIXED POINTS OF CODIMENSION
    Godin, Jonathan
    Rousseau, Christiane
    MOSCOW MATHEMATICAL JOURNAL, 2023, 23 (02) : 169 - 203
  • [29] GENERIC DETERMINANTAL SCHEMES AND THE SMOOTHABILITY OF DETERMINANTAL SCHEMES OF CODIMENSION-2
    STEFFEN, F
    MANUSCRIPTA MATHEMATICA, 1994, 82 (3-4) : 417 - 431
  • [30] Regularization around a generic codimension one fold-fold singularity
    Bonet-Reves, Carles
    Larrosa, Juliana
    M-Seara, Tere
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2018, 265 (05) : 1761 - 1838