Electric field derivative (dE/dt) pulse waveforms from dart-stepped-leaders in rocket-and-wire triggered lightning, recorded a distance of 226m from the channel base, are characterized. A single dE/dt pulse associated with a leader step consists of a fast initial rise of the same polarity as the following return stroke followed by an opposite polarity overshoot of smaller amplitude and subsequent decay to background level, without superimposed secondary pulses. A "slow front" often precedes the fast initial rise. For 47 single dE/dt leader pulses occurring during the final 15 mu s of 24 dart-stepped-leaders, the pulse mean half-peak width was 76 ns, mean 10-to-90% risetime 73 ns, and mean range-normalized peak amplitude 2.5 V/m/mu s. For integrated dE/dt, the mean half-peak width was 214 ns and the mean range-normalized peak amplitude 0.21 V/m. Most dart-stepped-leader dE/dt pulses are more complex than a single pulse. Interpulse interval and average peak amplitude range normalized to 100 km were measured for both single and complex dE/dt pulses during the final 15 mu s of 10 dart-stepped-leaders preceding triggered return strokes with peak currents ranging from 8.1 to 31.4 kA. The average range-normalized dE/dt and numerically integrated dE/dt (electric field) peak amplitude increased from 0.9 to 4.9 V/m/mu s and 0.13 to 0.47 V/m, respectively, with increasing return stroke peak current while the interpulse interval remained relatively constant at about 2 mu s. Strong positive linear correlations were found between both average range-normalized peak pulse amplitude and interstroke interval versus the following return stroke peak current.