Efficient quantum simulation for thermodynamics of infinite-size many-body systems in arbitrary dimensions

被引:11
|
作者
Ran, Shi-Ju [1 ,2 ]
Xi, Bin [3 ]
Peng, Cheng [4 ]
Su, Gang [4 ,5 ,6 ]
Lewenstein, Maciej [2 ,7 ]
机构
[1] Capital Normal Univ, Dept Phys, Beijing 100048, Peoples R China
[2] Barcelona Inst Sci & Technol, ICFO Inst Ciencies Foton, Av Carl Friedrich Gauss 3, Castelldefels 08860, Barcelona, Spain
[3] Yangzhou Univ, Coll Phys Sci & Technol, Yangzhou 225002, Jiangsu, Peoples R China
[4] Univ Chinese Acad Sci, Sch Phys Sci, POB 4588, Beijing 100049, Peoples R China
[5] Kavli Inst Theoret Sci, Beijing, Peoples R China
[6] CAS Ctr Excellence Topol Quantum Computat, Beijing, Peoples R China
[7] ICREA, Pg Lluis Co 23, Barcelona 08010, Spain
基金
北京市自然科学基金;
关键词
DENSITY-MATRIX RENORMALIZATION; BOSE-EINSTEIN CONDENSATION; ST-TRANSFORMATION APPROACH; ANALYTIC SOLUTIONS; PRODUCT STATES; SPIN LIQUIDS; TRANSITION; ALGORITHM; DYNAMICS; CHAINS;
D O I
10.1103/PhysRevB.99.205132
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In this work we propose to simulate many-body thermodynamics of infinite-size quantum lattice models in one, two, and three dimensions, in terms of few-body models of only O(10) sites, which we coin as quantum entanglement simulators (QES's). The QES is described by a temperature-independent Hamiltonian, with the boundary interactions optimized by the tensor network methods to mimic the entanglement between the bulk and environment in a finite-size canonical ensemble. The reduced density matrix of the physical bulk then gives that of the infinite-size canonical ensemble under interest. We show that the QES can, for instance, accurately simulate varieties of many-body phenomena, including finite-temperature crossover and algebraic excitations of the one-dimensional spin liquid, the phase transitions and low-temperature physics of the two- and three-dimensional antiferromagnets, and the crossovers of the two-dimensional topological system. Our work provides an efficient way to explore the thermodynamics of intractable quantum many-body systems with easily accessible systems.
引用
收藏
页数:9
相关论文
共 50 条
  • [31] SYNTHETIC QUANTUM MANY-BODY SYSTEMS
    Guerlin, C.
    Baumann, K.
    Brennecke, F.
    Greif, D.
    Joerdens, R.
    Leinss, S.
    Strohmaier, N.
    Tarruell, L.
    Uehlinger, T.
    Moritz, H.
    Esslinger, T.
    LASER SPECTROSCOPY, 2010, : 212 - 221
  • [32] ERGODICITY OF QUANTUM MANY-BODY SYSTEMS
    JANNER, A
    HELVETICA PHYSICA ACTA, 1963, 36 (02): : 155 - &
  • [33] Seniority in quantum many-body systems
    Van Isacker, P.
    SYMMETRIES IN NATURE, 2010, 1323 : 141 - 152
  • [34] Negentropy in Many-Body Quantum Systems
    Quarati, Piero
    Lissia, Marcello
    Scarfone, Antonio M.
    ENTROPY, 2016, 18 (02)
  • [35] Digital quantum simulation of non-equilibrium quantum many-body systems
    Fauseweh, Benedikt
    Zhu, Jian-Xin
    QUANTUM INFORMATION PROCESSING, 2021, 20 (04)
  • [36] Size consistency of tensor network methods for quantum many-body systems
    Wang, Zhen
    Han, Yongjian
    Guo, Guang-Can
    He, Lixin
    PHYSICAL REVIEW B, 2013, 88 (12):
  • [37] Efficient learning of many-body systems
    Chen, Sitan
    NATURE PHYSICS, 2024, 20 (06) : 899 - 900
  • [38] Multifractal dimensions for random matrices, chaotic quantum maps, and many-body systems
    Baecker, Arnd
    Haque, Masudul
    Khaymovich, Ivan M.
    PHYSICAL REVIEW E, 2019, 100 (03)
  • [39] SIMULATION OF CLASSICAL MANY-BODY SYSTEMS
    EGER, M
    AMERICAN JOURNAL OF PHYSICS, 1970, 38 (12) : 1475 - &
  • [40] SOLVABLE QUANTUM MANY-BODY PROBLEMS IN 2 DIMENSIONS
    YAN, ML
    ZHAO, BH
    PHYSICS LETTERS A, 1992, 168 (01) : 25 - 27