PARALLEL SPARSE UNMIXING OF HYPERSPECTRAL DATA

被引:9
|
作者
Rodriguez Alves, Jose M. [1 ]
Nascimento, Jose M. P. [1 ,2 ]
Bioucas-Dias, Jose M. [1 ,3 ]
Plaza, Antonio [4 ]
Silva, Vitor [5 ]
机构
[1] Inst Telecomunicacoes, Lisbon, Portugal
[2] Inst Super Engn Lisboa, Lisbon, Portugal
[3] Univ Tech Lisbon, Inst Super Tecn, P-1100 Lisbon, Portugal
[4] Univ Extremadura, Hyperspectral Comp Lab, Caceres, Spain
[5] Univ Coimbra, Inst Telecommunicacoes, DEEC, P-3000 Coimbra, Portugal
关键词
Hyperspectral Unmixing; Sparse Regression; Graphics Processing Unit; Parallel Methods; ENDMEMBER EXTRACTION; COMPONENT ANALYSIS;
D O I
10.1109/IGARSS.2013.6723057
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In this paper, a new parallel method for sparse spectral unmixing of remotely sensed hyperspectral data on commodity graphics processing units (GPUs) is presented. A semi-supervised approach is adopted, which relies on the increasing availability of spectral libraries of materials measured on the ground instead of resorting to endmember extraction methods. This method is based on the spectral unmixing by splitting and augmented Lagrangian (SUNSAL) that estimates the material's abundance fractions. The parallel method is performed in a pixel-by-pixel fashion and its implementation properly exploits the GPU architecture at low level, thus taking full advantage of the computational power of GPUs. Experimental results obtained for simulated and real hyperspectral datasets reveal significant speedup factors, up to 1 64 times, with regards to optimized serial implementation.
引用
收藏
页码:1446 / 1449
页数:4
相关论文
共 50 条
  • [31] SUBSPACE MATCHING PURSUIT WITH DICE COEFFICIENT FOR SPARSE UNMIXING OF HYPERSPECTRAL DATA
    Li, Dan
    Zhang, Chunmei
    Zhou, Qianqi
    Wang, Junyan
    Xu, Guodong
    2016 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2016, : 6585 - 6588
  • [32] Sparse Unmixing of Hyperspectral Data based on Robust Linear Mixing Model
    Li, Chang
    Ma, Yong
    Gao, Yuan
    Wang, Zhongyuan
    Ma, Jiayi
    2016 30TH ANNIVERSARY OF VISUAL COMMUNICATION AND IMAGE PROCESSING (VCIP), 2016,
  • [33] Unmixing hyperspectral data
    Parra, L
    Spence, C
    Sajda, P
    Ziehe, A
    Müller, KR
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 12, 2000, 12 : 942 - 948
  • [34] Sparse Dictionary Learning for Blind Hyperspectral Unmixing
    Liu, Yang
    Guo, Yi
    Li, Feng
    Xin, Lei
    Huang, Puming
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2019, 16 (04) : 578 - 582
  • [35] A parallel unmixing algorithm for hyperspectral images
    Robila, Stefan A.
    Maciak, Lukasz G.
    INTELLIGENT ROBOTS AND COMPUTER VISION XXIV: ALGORITHMS, TECHNIQUES, AND ACTIVE VISION, 2006, 6384
  • [36] Efficient Hyperspectral Sparse Regression Unmixing With Multilayers
    Shen, Xiangfei
    Chen, Lihui
    Liu, Haijun
    Su, Xi
    Wei, Wenjia
    Zhu, Xia
    Zhou, Xichuan
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2023, 61
  • [37] SPARSE UNMIXING BASED DENOISING FOR HYPERSPECTRAL IMAGES
    Erturk, Alp
    2016 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2016, : 7006 - 7009
  • [38] DUAL SPATIAL WEIGHTED SPARSE HYPERSPECTRAL UNMIXING
    Chen, Yonggang
    Deng, Chengzhi
    Zhang, Shaoquan
    Li, Fan
    Zhang, Ningyuan
    Wang, Shengqian
    2022 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2022), 2022, : 1772 - 1775
  • [39] DOUBLE REWEIGHTED SPARSE REGRESSION FOR HYPERSPECTRAL UNMIXING
    Wang, Rui
    Li, Heng-Chao
    Liao, Wenzhi
    Pizurica, Aleksandra
    2016 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2016, : 6986 - 6989
  • [40] Simultaneous sparse recovery for unsupervised hyperspectral unmixing
    Nguyen, Dzung T.
    Chen, Yi
    Tran, Trac D.
    Chin, Sang P.
    ALGORITHMS AND TECHNOLOGIES FOR MULTISPECTRAL, HYPERSPECTRAL, AND ULTRASPECTRAL IMAGERY XVII, 2011, 8048