3D printing enables the rapid prototyping of modular microfluidic devices for particle conjugation

被引:46
|
作者
Vasilescu, Steven A. [1 ]
Bazaz, Sajad Razavi [1 ]
Jin, Dayong [3 ,4 ]
Shimoni, Olga [2 ]
Warkiani, Majid Ebrahimi [1 ,3 ,4 ,5 ]
机构
[1] Univ Technol Sydney, Sch Biomed Engn, Sydney, NSW 2007, Australia
[2] Univ Technol Sydney, Sch Math & Phys Sci, Sydney, NSW 2007, Australia
[3] Univ Technol Sydney, Fac Sci, Inst Biomed Mat & Devices IBMD, Sydney, NSW 2007, Australia
[4] Southern Univ Sci & Technol, SUStech UTS Joint Res Ctr Biomed Mat & Devices, Shenzhen 518055, Peoples R China
[5] Sechenov Univ, Inst Mol Med, Moscow 119991, Russia
基金
澳大利亚研究理事会; 英国医学研究理事会; 澳大利亚国家健康与医学研究理事会;
关键词
3D printing method; 3D micromixer; Antibody conjugation; Microfluidics; Rapid prototyping;
D O I
10.1016/j.apmt.2020.100726
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Antibody micro/nano-particle conjugates have proven to be essential tools in many diagnostic and nanomedicine applications. However, their production with homogenous coating and in a continuous fashion remains a tedious, labor-intensive, and costly process. In this regard, 3D micromixer-based microfluidic devices offer significant advantages over existing methods, where manipulating the flow in three dimensions increases fluid contact area and surface disruption, facilitating efficient mixing. While conventional softlithography is capable of fabricating simple 2D micromixers, complications arise when processing 3D structures. In this paper, we report the direct fabrication of a 3D complex microchannel design using additive manufacturing for the continuous conjugation of antibodies onto particle surfaces. This method benefits from a reduction in cost and time (from days to hours), simplified fabrication process, and limited post-processing. The flexibility of direct 3D printing allows quick and easy tailoring of design features to facilitate the production of micro and nanoparticles conjugated with functional antibodies in a continuous mixing process. We demonstrate that the produced antibody-functionalized particles retain their functionality by a firm and specific interaction with antigen presenting cells. By connecting 3D printed micromixers across the conjugation process, we illustrate the role of 3D printed microchannels as modularized components. The 3D printing method we report enables a broad spectrum of researchers to produce complex microfluidic geometries within a short time frame. (c) 2020 Elsevier Ltd. All rights reserved.
引用
收藏
页数:10
相关论文
共 50 条
  • [11] Rapid Prototyping Technologies: 3D Printing Applied in Medicine
    Oleksy, Malgorzata
    Dynarowicz, Klaudia
    Aebisher, David
    PHARMACEUTICS, 2023, 15 (08)
  • [12] Polymer ionomers for rapid prototyping and rapid manufacturing by means of 3D printing
    Pfister, A
    Walz, U
    Laib, A
    Mülhaupt, R
    MACROMOLECULAR MATERIALS AND ENGINEERING, 2005, 290 (02) : 99 - 113
  • [13] Accurate and rapid 3D printing of microfluidic devices using wavelength selection on a DLP printer
    van der Linden, Peter J. E. M.
    Popov, Anton M.
    Pontoni, Diego
    LAB ON A CHIP, 2020, 20 (22) : 4128 - 4140
  • [14] Rapid Prototyping of Thermoplastic Microfluidic 3D Cell Culture Devices by Creating Regional Hydrophilicity Discrepancy
    Bai, Haiqing
    Olson, Kristen N. Peters
    Pan, Ming
    Marshall, Thomas
    Singh, Hardeep
    Ma, Jingzhe
    Gilbride, Paige
    Yuan, Yu-Chieh
    McCormack, Jenna
    Si, Longlong
    Maharjan, Sushila
    Huang, Di
    Qian, Xiaohua
    Livermore, Carol
    Zhang, Yu Shrike
    Xie, Xin
    ADVANCED SCIENCE, 2024, 11 (07)
  • [15] Developing Microfluidic Sensing Devices Using 3D Printing
    Rusling, James F.
    ACS SENSORS, 2018, 3 (03): : 522 - 526
  • [16] 3D printing-based microfluidic devices in fabric
    Switalla, Ander
    Wentland, Lael
    Fu, Elain
    JOURNAL OF MICROMECHANICS AND MICROENGINEERING, 2023, 33 (02)
  • [17] Rapid fabrication of modular 3D paper-based microfluidic chips using projection-based 3D printing
    Mingjun Xie
    Zexin Fu
    Chunfei Lu
    Sufan Wu
    Lei Pan
    Yong He
    Yi Sun
    Ji Wang
    Bio-Design and Manufacturing, 2024, 7 (05) : 611 - 623
  • [18] Rapid fabrication of modular 3D paper-based microfluidic chips using projection-based 3D printing
    Xie, Mingjun
    Fu, Zexin
    Lu, Chunfei
    Wu, Sufan
    Pan, Lei
    He, Yong
    Sun, Yi
    Wang, Ji
    BIO-DESIGN AND MANUFACTURING, 2024, 7 (05) : 611 - 623
  • [19] Application of 3D colour printing for the rapid prototyping of functional models
    Junk, S.
    Saemann-Sun, J.
    INNOVATIVE DEVELOPMENTS IN DESIGN AND MANUFACTURING: ADVANCED RESEARCH IN VIRTUAL AND RAPID PROTOTYPING, 2010, : 677 - +
  • [20] 3D Printing: Rapid Prototyping from Food to Food Packaging
    Brody, Aaron L.
    FOOD TECHNOLOGY, 2014, 68 (04) : 107 - 108