A modular synthetic approach for band-gap engineering of armchair graphene nanoribbons

被引:61
|
作者
Li, Gang [1 ,2 ]
Yoon, Ki-Young [1 ,2 ]
Zhong, Xinjue [3 ]
Wang, Jianchun [1 ,2 ]
Zhang, Rui [4 ]
Guest, Jeffrey R. [4 ]
Wen, Jianguo [4 ]
Zhu, X. -Y. [3 ]
Dong, Guangbin [1 ,2 ]
机构
[1] Univ Chicago, Dept Chem, Chicago, IL 60637 USA
[2] Univ Texas Austin, Dept Chem, Austin, TX 78712 USA
[3] Columbia Univ, Dept Chem, New York, NY 10027 USA
[4] Argonne Natl Lab, Ctr Nanoscale Mat, 9700 S Cass Ave, Argonne, IL 60439 USA
来源
NATURE COMMUNICATIONS | 2018年 / 9卷
关键词
BOTTOM-UP SYNTHESIS; ORGANIC ELECTRONICS; CARBON NANOTUBES; BENZOTHIADIAZOLE; REGIOSELECTIVITY; SEMICONDUCTORS; CHEMISTRY;
D O I
10.1038/s41467-018-03747-2
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Despite the great promise of armchair graphene nanoribbons (aGNRs) as high-performance semiconductors, practical band-gap engineering of aGNRs remains an unmet challenge. Given that width and edge structures are the two key factors for modulating band-gaps of aGNRs, a reliable synthetic method that allows control of both factors would be highly desirable. Here we report a simple modular strategy for efficient preparation of N = 6 aGNR, the narrowest member in the N = 3p (p: natural number) aGNR family, and two unsymmetrically edge-functionalized GNRs that contain benzothiadiazole and benzotriazole moieties. The trend of band-gap transitions among these GNRs parallels those in donor-acceptor alternating conjugated polymers. In addition, post-functionalization of the unsymmetrical heterocyclic edge via C-H borylation permits further band-gap tuning. Therefore, this method opens the door for convenient band-gap engineering of aGNRs through modifying the heteroarenes on the edge.
引用
收藏
页数:9
相关论文
共 50 条
  • [41] Band gap engineering of graphene/h-BN hybrid superlattices nanoribbons
    Li, Shilong
    Ren, Zhaoyu
    Zheng, Jiming
    Zhou, Yixuan
    Wan, Yun
    Hao, Ling
    JOURNAL OF APPLIED PHYSICS, 2013, 113 (03)
  • [42] Topological band engineering of graphene nanoribbons
    Daniel J. Rizzo
    Gregory Veber
    Ting Cao
    Christopher Bronner
    Ting Chen
    Fangzhou Zhao
    Henry Rodriguez
    Steven G. Louie
    Michael F. Crommie
    Felix R. Fischer
    Nature, 2018, 560 : 204 - 208
  • [43] Topological band engineering of graphene nanoribbons
    Rizzo, Daniel J.
    Veber, Gregory
    Cao, Ting
    Bronner, Christopher
    Chen, Ting
    Zhao, Fangzhou
    Rodriguez, Henry
    Louie, Steven G.
    Crommie, Michael F.
    Fischer, Felix R.
    NATURE, 2018, 560 (7717) : 204 - +
  • [44] NONPARABOLICITY AS A TOOL IN BAND-GAP ENGINEERING
    LANDSBERG, PT
    YU, YJ
    JOURNAL OF APPLIED PHYSICS, 1988, 63 (05) : 1789 - 1791
  • [45] Effect of strain on gap discrete breathers at the edge of armchair graphene nanoribbons
    Korznikova, E. A.
    Baimova, J. A.
    Dmitriev, S. V.
    EPL, 2013, 102 (06)
  • [46] Band-gap engineering in chemically conjugated bilayer graphene: Ab initio calculations
    Dinh Loc Duong
    Lee, Seung Mi
    Chae, Sang Hul
    Quang Huy Ta
    Lee, Si Young
    Han, Gang Hee
    Bae, Jung Jun
    Lee, Young Hee
    PHYSICAL REVIEW B, 2012, 85 (20):
  • [47] Band-gap engineering with a twist: Formation of intercalant superlattices in twisted graphene bilayers
    Symalla, Franz
    Shallcross, Sam
    Beljakov, Igor
    Fink, Karin
    Wenzel, Wolfgang
    Meded, Velimir
    PHYSICAL REVIEW B, 2015, 91 (20)
  • [48] Peculiar band gap structure of graphene nanoribbons
    Ezawa, Motohiko
    Physica Status Solidi C - Current Topics in Solid State Physics, Vol 4, No 2, 2007, 4 (02): : 489 - 492
  • [49] Gap engineering and wave function symmetry in C and BN armchair nanoribbons
    Richaud, Elisa Serrano
    Latil, Sylvain
    Amara, Hakim
    Sponza, Lorenzo
    PHYSICAL REVIEW B, 2024, 109 (23)
  • [50] Width-Dependent Band Gap in Armchair Graphene Nanoribbons Reveals Fermi Level Pinning on Au(111)
    Merino-Diez, Nestor
    Garcia-Lekue, Aran
    Carbonell-Sanroma, Eduard
    Li, Jingcheng
    Corso, Martina
    Colazzo, Luciano
    Sedona, Francesco
    Sanchez-Portal, Daniel
    Pascual, Jose I.
    de Oteyza, Dimas G.
    ACS NANO, 2017, 11 (11) : 11661 - 11668