机构:
Nanjing Normal Univ, Sch Math Sci, Nanjing 210023, Jiangsu, Peoples R China
Nanjing Normal Univ, Inst Math, Nanjing 210023, Jiangsu, Peoples R ChinaNanjing Normal Univ, Sch Math Sci, Nanjing 210023, Jiangsu, Peoples R China
Chen, Yong-Gao
[1
,2
]
Tang, Min
论文数: 0引用数: 0
h-index: 0
机构:
Anhui Normal Univ, Sch Math & Comp Sci, Wuhu 241003, Peoples R ChinaNanjing Normal Univ, Sch Math Sci, Nanjing 210023, Jiangsu, Peoples R China
Tang, Min
[3
]
机构:
[1] Nanjing Normal Univ, Sch Math Sci, Nanjing 210023, Jiangsu, Peoples R China
[2] Nanjing Normal Univ, Inst Math, Nanjing 210023, Jiangsu, Peoples R China
[3] Anhui Normal Univ, Sch Math & Comp Sci, Wuhu 241003, Peoples R China
General sequences;
additive representation functions;
D O I:
10.5486/PMD.2013.5536
中图分类号:
O1 [数学];
学科分类号:
0701 ;
070101 ;
摘要:
Let A = {a(1), a(2),...}(a(1) <= a(2) <= ...) be an infinite sequence of nonnegative integers, k >= 2 be a fixed integer and denote by R-k (n) the number of solutions of a(i1) + a(i2) + ... + a(ik) = n. In this paper, we prove that if g(n) is a monotonically increasing arithmetic function with g(n) -> +infinity and g(n) = o(n(log n)(-2)), then for any 0 < epsilon < 1, vertical bar R-k(n) - g(n)vertical bar > ([k/2]! - epsilon)root g(n) holds for infinitely many positive integers n. We also prove that for a positive integer d, if R-k(n) >= d for all sufficiently large integers n, then R-k(n) >= d + 2[k/2]!root d + ([k/2]!)(2) for infinitely many positive integers n.
机构:
Nanjing Normal Univ, Sch Math Sci, Nanjing 210023, Jiangsu, Peoples R China
Nanjing Normal Univ, Inst Math, Nanjing 210023, Jiangsu, Peoples R ChinaNanjing Normal Univ, Sch Math Sci, Nanjing 210023, Jiangsu, Peoples R China
Chen, Yong-Gao
Li, Ya-Li
论文数: 0引用数: 0
h-index: 0
机构:
Henan Univ, Sch Math & Stat, Kaifeng 475001, Peoples R ChinaNanjing Normal Univ, Sch Math Sci, Nanjing 210023, Jiangsu, Peoples R China
机构:
Nanjing Normal Univ, Sch Math Sci, Nanjing 210023, Jiangsu, Peoples R China
Nanjing Normal Univ, Inst Math, Nanjing 210023, Jiangsu, Peoples R ChinaNanjing Normal Univ, Sch Math Sci, Nanjing 210023, Jiangsu, Peoples R China
Chen, Yong-Gao
Tang, Min
论文数: 0引用数: 0
h-index: 0
机构:
Anhui Normal Univ, Sch Math & Comp Sci, Wuhu 241003, Peoples R ChinaNanjing Normal Univ, Sch Math Sci, Nanjing 210023, Jiangsu, Peoples R China