On a theorem of Erdos and Sarkozy

被引:0
|
作者
Chen, Yong-Gao [1 ,2 ]
Tang, Min [3 ]
机构
[1] Nanjing Normal Univ, Sch Math Sci, Nanjing 210023, Jiangsu, Peoples R China
[2] Nanjing Normal Univ, Inst Math, Nanjing 210023, Jiangsu, Peoples R China
[3] Anhui Normal Univ, Sch Math & Comp Sci, Wuhu 241003, Peoples R China
来源
PUBLICATIONES MATHEMATICAE-DEBRECEN | 2013年 / 83卷 / 03期
基金
中国国家自然科学基金;
关键词
General sequences; additive representation functions;
D O I
10.5486/PMD.2013.5536
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let A = {a(1), a(2),...}(a(1) <= a(2) <= ...) be an infinite sequence of nonnegative integers, k >= 2 be a fixed integer and denote by R-k (n) the number of solutions of a(i1) + a(i2) + ... + a(ik) = n. In this paper, we prove that if g(n) is a monotonically increasing arithmetic function with g(n) -> +infinity and g(n) = o(n(log n)(-2)), then for any 0 < epsilon < 1, vertical bar R-k(n) - g(n)vertical bar > ([k/2]! - epsilon)root g(n) holds for infinitely many positive integers n. We also prove that for a positive integer d, if R-k(n) >= d for all sufficiently large integers n, then R-k(n) >= d + 2[k/2]!root d + ([k/2]!)(2) for infinitely many positive integers n.
引用
收藏
页码:407 / 413
页数:7
相关论文
共 50 条