Quantum simulation of the Dirac equation

被引:556
|
作者
Gerritsma, R. [1 ,2 ]
Kirchmair, G. [1 ,2 ]
Zaehringer, F. [1 ,2 ]
Solano, E. [3 ,4 ]
Blatt, R. [1 ,2 ]
Roos, C. F. [1 ,2 ]
机构
[1] Austrian Acad Sci, Inst Quantenopt & Quanteninformat, A-6020 Innsbruck, Austria
[2] Univ Innsbruck, Inst Expt Phys, A-6020 Innsbruck, Austria
[3] Univ Pais Vasco Euskal Herriko Unibertsitatea, Dept Quim Fis, Bilbao 48080, Spain
[4] Basque Fdn Sci, IKERBASQUE, Bilbao 48011, Spain
基金
奥地利科学基金会;
关键词
GRAPHENE;
D O I
10.1038/nature08688
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The Dirac equation(1) successfully merges quantum mechanics with special relativity. It provides a natural description of the electron spin, predicts the existence of antimatter(2) and is able to reproduce accurately the spectrum of the hydrogen atom. The realm of the Dirac equation-relativistic quantum mechanics-is considered to be the natural transition to quantum field theory. However, the Dirac equation also predicts some peculiar effects, such as Klein's paradox(3) and 'Zitterbewegung', an unexpected quivering motion of a free relativistic quantum particle(4). These and other predicted phenomena are key fundamental examples for understanding relativistic quantum effects, but are difficult to observe in real particles. In recent years, there has been increased interest in simulations of relativistic quantum effects using different physical set-ups(5-11), in which parameter tunability allows access to different physical regimes. Here we perform a proof-of-principle quantum simulation of the one-dimensional Dirac equation using a single trapped ion(7) set to behave as a free relativistic quantum particle. We measure the particle position as a function of time and study Zitterbewegung for different initial superpositions of positive- and negative-energy spinor states, as well as the crossover from relativistic to non-relativistic dynamics. The high level of control of trapped-ion experimental parameters makes it possible to simulate textbook examples of relativistic quantum physics.
引用
收藏
页码:68 / U72
页数:5
相关论文
共 50 条
  • [11] Higher dimensional supersymmetric quantum mechanics and Dirac equation
    Singh, LP
    Ram, B
    PRAMANA-JOURNAL OF PHYSICS, 2002, 58 (04): : 591 - 597
  • [12] Lorentz-Dirac equation in the light of quantum theory
    Nikishov, AI
    ZHURNAL EKSPERIMENTALNOI I TEORETICHESKOI FIZIKI, 1996, 110 (02): : 510 - 525
  • [13] Supersymmetric quantum mechanics in first order Dirac equation
    Joshi, SC
    Rajput, BS
    INDIAN JOURNAL OF PURE & APPLIED PHYSICS, 2000, 38 (06) : 437 - 439
  • [14] A novel quantum-mechanical interpretation of the Dirac equation
    Kiessling, M. K-H
    Tahvildar-Zadeh, A. S.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2016, 49 (13)
  • [15] Higher dimensional supersymmetric quantum mechanics and Dirac equation
    L P Singh
    B Ram
    Pramana, 2002, 58 : 591 - 597
  • [16] Introducing supersymmetric quantum mechanics via the Dirac equation
    Vahle, P
    Ram, B
    AMERICAN JOURNAL OF PHYSICS, 1997, 65 (11) : 1112 - 1113
  • [17] Relativistic quantum vorticity of the quadratic form of the Dirac equation
    Asenjo, Felipe A.
    Mahajan, Swadesh M.
    PHYSICA SCRIPTA, 2015, 90 (01)
  • [18] Dirac's equation and the nature of quantum field theory
    Plotnitsky, Arkady
    PHYSICA SCRIPTA, 2012, T151
  • [19] Algorithm for the solution of the Dirac equation on digital quantum computers
    Fillion-Gourdeau, Francois
    MacLean, Steve
    Laflamme, Raymond
    PHYSICAL REVIEW A, 2017, 95 (04)
  • [20] Waveguide array simulation of the Dirac equation for even potentials
    Villegas-Martinez, Braulio M.
    Soto-Eguibar, Francisco
    Moya-Cessa, Hector M.
    RESULTS IN PHYSICS, 2022, 34