An Estimation and Correction Combined Method for HVDC Model Parameters Identification

被引:1
|
作者
Li, Feng [1 ]
Wang, Qi [1 ]
Hu, Jian-Xiong [1 ]
Tang, Yi [1 ]
机构
[1] Southeast Univ, Sch Elect Engn, Nanjing 210096, Peoples R China
关键词
Databases; Trajectory; Parameter estimation; Pattern matching; Correlation coefficient; Indexes; Computational modeling; gradient decent; parameter identification; high voltage direct current;
D O I
10.1109/ACCESS.2021.3070081
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Identifying correct model parameters is important for actual power system operation and control. Though existing gradient decent method shows good timeliness, it would converge to wrong results because of inevitable linearization process when applied for strongly nonlinear models. To make up this shortcoming, an estimation and correction combined method is proposed in this paper, by which the gradient method is expected to have better initial values for avoiding the local optimum trap. In the estimation process, pattern matching is utilized based on the constructed post-disturbance trajectory based typical parameters matching database. To construct the typical parameters matching database, correlation coefficient based forward and backward cluster method is applied, with which the typical parameters matching database can be updated conveniently and quickly. In the correction process, a novel comprehensive evaluation index is put forward for gradient decent method to evaluate parameter identification effects reasonably. Finally, the proposed combined parameter identification method is verified with standard high voltage direct current (HVDC) models together with parameter sensitivity analysis, and results show effectiveness.
引用
收藏
页码:51020 / 51028
页数:9
相关论文
共 50 条
  • [21] The vector error correction index model: representation, estimation and identification
    Cubadda, Gianluca
    Mazzali, Marco
    ECONOMETRICS JOURNAL, 2024, 27 (01): : 126 - 150
  • [22] An inverse identification method for automatic estimation of heat source model parameters for laser directed energy deposition
    Bertrand, Johanna
    Abbes, Fazilay
    Bonnefoy, Herve
    Abbes, Boussad
    INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY, 2024, 134 (3-4): : 1319 - 1331
  • [23] Investigating Reliability on Fuel Cell Model Identification. Part II: An Estimation Method for Stochastic Parameters
    Tsikonis, L.
    Diethelm, S.
    Seiler, H.
    Nakajo, A.
    Van Herle, J.
    Favrat, D.
    FUEL CELLS, 2012, 12 (05) : 685 - 708
  • [24] Identification of modal parameters by frequency domain subspace method (Consideration of Residual Terms and Estimation of Model Order)
    Hino, Junichi
    Masukawa, Tomohiro
    Sonobe, Motomichi
    Nihon Kikai Gakkai Ronbunshu, C Hen/Transactions of the Japan Society of Mechanical Engineers, Part C, 2013, 79 (804): : 2792 - 2803
  • [25] SLAM estimation method for uncertain model noise parameters
    Gao, Junchai
    Yan, Keding
    Han, Bing
    CLUSTER COMPUTING-THE JOURNAL OF NETWORKS SOFTWARE TOOLS AND APPLICATIONS, 2019, 22 (Suppl 4): : S9425 - S9434
  • [26] Kinetic model identification and parameters estimation from TGA experiments
    Reverte, Cédric
    Dirion, Jean-Louis
    Cabassud, Michel
    Journal of Analytical and Applied Pyrolysis, 2007, 79 (1-2 SPEC. ISS.): : 297 - 305
  • [27] Kinetic model identification and parameters estimation from TGA experiments
    Reverte, Cedric
    Dirion, Jean-Louis
    Cabassud, Michel
    JOURNAL OF ANALYTICAL AND APPLIED PYROLYSIS, 2007, 79 (1-2) : 297 - 305
  • [28] Parameters identification with the Multiple Model Adaptive Estimation (MMAE) algorithm
    Martins, JC
    Proceedings of the 25th IASTED International Conference on Modelling, Identification, and Control, 2006, : 501 - 506
  • [29] A novelty Bayesian method for parameters estimation and model selection
    Dai, H
    Yuan, ZJ
    7TH WORLD MULTICONFERENCE ON SYSTEMICS, CYBERNETICS AND INFORMATICS, VOL IV, PROCEEDINGS: IMAGE, ACOUSTIC, SPEECH AND SIGNAL PROCESSING, 2003, : 429 - 432
  • [30] A method for estimation of parameters in a neural model with noisy measurements
    Upadhyay, Ranjit Kumar
    Mondal, Argha
    Paul, Chinmoy
    NONLINEAR DYNAMICS, 2016, 85 (04) : 2521 - 2533