Type-2 Fuzzy Clustering and a Type-2 Fuzzy Inference Neural Network for the Prediction of Short-Term Interest Rates

被引:5
|
作者
Enke, David [1 ]
Mehdiyev, Nijat [2 ,3 ]
机构
[1] Missouri Univ Sci & Technol, Dept Engn Management & Syst Engn, Rolla, MO 65409 USA
[2] Univ Augsburg, Dept Finance & Informat Management, D-86159 Augsburg, Germany
[3] Tech Univ Munich, Dept Finance & Informat Management, D-80290 Munich, Germany
关键词
Multiple Regression Analysis; Differential Evoultion; Type-2 Fuzzy Systems; Interest Rate Forecasting; REGRESSION;
D O I
10.1016/j.procs.2013.09.248
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The following paper discusses the use of a hybrid model for the prediction of short-term US interest rates. The model consists of a differential evolution-based fuzzy type-2 clustering with a fuzzy type-2 inference neural network, after input preprocessing with multiple regression analysis. The model was applied to forecast the US 3-Month T-bill rates. Promising model performance was obtained as measured using root mean square error. (C) 2013 The Authors. Published by Elsevier B.V.
引用
收藏
页码:115 / 120
页数:6
相关论文
共 50 条
  • [31] On type-2 fuzzy relations and interval-valued type-2 fuzzy sets
    Hu, Bao Qing
    Wang, Chun Yong
    FUZZY SETS AND SYSTEMS, 2014, 236 : 1 - 32
  • [32] A New Look at Type-2 Fuzzy Sets and Type-2 Fuzzy Logic Systems
    Wang, Li-Xin
    IEEE TRANSACTIONS ON FUZZY SYSTEMS, 2017, 25 (03) : 693 - 706
  • [33] The Construction of Type-2 Fuzzy Reasoning Relations for Type-2 Fuzzy Logic Systems
    Zhao, Shan
    Li, Hongxing
    JOURNAL OF APPLIED MATHEMATICS, 2014,
  • [34] An Interval Type-2 Fuzzy Distribution Network
    Miller, Simon M.
    Popova, Viara
    John, Robert
    Gongora, Mario
    PROCEEDINGS OF THE JOINT 2009 INTERNATIONAL FUZZY SYSTEMS ASSOCIATION WORLD CONGRESS AND 2009 EUROPEAN SOCIETY OF FUZZY LOGIC AND TECHNOLOGY CONFERENCE, 2009, : 697 - 702
  • [35] Monotonic type-2 fuzzy neural network and its application to thermal comfort prediction
    Chengdong Li
    Jianqiang Yi
    Ming Wang
    Guiqing Zhang
    Neural Computing and Applications, 2013, 23 : 1987 - 1998
  • [36] Monotonic type-2 fuzzy neural network and its application to thermal comfort prediction
    Li, Chengdong
    Yi, Jianqiang
    Wang, Ming
    Zhang, Guiqing
    NEURAL COMPUTING & APPLICATIONS, 2013, 23 (7-8): : 1987 - 1998
  • [37] Short-Term Power Load Forecasting by Interval Type-2 Fuzzy Logic System
    Yao, Lan
    Jiang, Yu-lian
    Xiao, Jian
    INFORMATION COMPUTING AND APPLICATIONS, PT II, 2011, 244 : 575 - 582
  • [38] Controlling Membership Spread in Type-2 Fuzzy Clustering
    Chantapakul, Watchanan
    Keller, James M.
    Auephanwiriyakul, Sansanee
    2022 IEEE INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS (FUZZ-IEEE), 2022,
  • [39] Fuzzy Type-2 c-ellipses Clustering
    Golsefid, S. MalekMohamadi
    Zarandi, M. H. F.
    Bastani, S.
    PROCEEDINGS OF THE 2013 JOINT IFSA WORLD CONGRESS AND NAFIPS ANNUAL MEETING (IFSA/NAFIPS), 2013, : 1221 - 1226
  • [40] eT2FIS: An Evolving Type-2 Neural Fuzzy Inference System
    Tung, S. W.
    Quek, C.
    Guan, C.
    INFORMATION SCIENCES, 2013, 220 : 124 - 148