Projected phase-change memory devices

被引:140
|
作者
Koelmans, Wabe W. [1 ]
Sebastian, Abu [1 ]
Jonnalagadda, Vara Prasad [1 ]
Krebs, Daniel [1 ]
Dellmann, Laurent [1 ]
Eleftheriou, Evangelos [1 ]
机构
[1] IBM Res Zurich, CH-8803 Ruschlikon, Switzerland
来源
NATURE COMMUNICATIONS | 2015年 / 6卷
关键词
CRYSTAL-GROWTH;
D O I
10.1038/ncomms9181
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Nanoscale memory devices, whose resistance depends on the history of the electric signals applied, could become critical building blocks in new computing paradigms, such as brain-inspired computing and memcomputing. However, there are key challenges to overcome, such as the high programming power required, noise and resistance drift. Here, to address these, we present the concept of a projected memory device, whose distinguishing feature is that the physical mechanism of resistance storage is decoupled from the information-retrieval process. We designed and fabricated projected memory devices based on the phase-change storage mechanism and convincingly demonstrate the concept through detailed experimentation, supported by extensive modelling and finite-element simulations. The projected memory devices exhibit remarkably low drift and excellent noise performance. We also demonstrate active control and customization of the programming characteristics of the device that reliably realize a multitude of resistance states.
引用
收藏
页数:7
相关论文
共 50 条
  • [31] Two generations of phase-change memory devices: Differences and common problems
    Popov, Anatoly
    PHYSICA STATUS SOLIDI B-BASIC SOLID STATE PHYSICS, 2009, 246 (08): : 1837 - 1840
  • [32] Operation dynamics in phase-change memory cells and the role of access devices
    Faraclas, A.
    Williams, N.
    Dirisaglik, F.
    Cil, K.
    Gokirmak, A.
    Silva, H.
    2012 IEEE COMPUTER SOCIETY ANNUAL SYMPOSIUM ON VLSI (ISVLSI), 2012, : 78 - 83
  • [33] Voltage-controlled relaxation oscillations in phase-change memory devices
    Ielmini, Daniele
    Mantegazza, Davide
    Lacaita, Andrea L.
    IEEE ELECTRON DEVICE LETTERS, 2008, 29 (06) : 568 - 570
  • [34] Fabrication and Evaluation of Nanopillar-Shaped Phase-Change Memory Devices
    Hong, Sung-Hoon
    Shin, Ju-Hyeon
    Bae, Byeong-Ju
    Lee, Heon
    JAPANESE JOURNAL OF APPLIED PHYSICS, 2011, 50 (03)
  • [35] Phase-change memory materials
    Kraft, Arno
    CHEMISTRY & INDUSTRY, 2022, 86 (01) : 43 - 43
  • [36] Quasicrystalline phase-change memory
    Lee, Eun-Sung
    Yoo, Joung E.
    Yoon, Du S.
    Kim, Sung D.
    Kim, Yongjoo
    Hwang, Soobin
    Kim, Dasol
    Jeong, Hyeong-Chai
    Kim, Won T.
    Chang, Hye J.
    Suh, Hoyoung
    Ko, Dae-Hong
    Cho, Choonghee
    Choi, Yongjoon
    Kim, Do H.
    Cho, Mann-Ho
    SCIENTIFIC REPORTS, 2020, 10 (01)
  • [37] Interfacial phase-change memory
    Simpson, R. E.
    Fons, P.
    Kolobov, A. V.
    Fukaya, T.
    Krbal, M.
    Yagi, T.
    Tominaga, J.
    NATURE NANOTECHNOLOGY, 2011, 6 (08) : 501 - 505
  • [38] Phase-change memory architectures
    Asadinia, Marjan
    Sarbazi-Azad, Hamid
    DURABLE PHASE-CHANGE MEMORY ARCHITECTURES, 2020, 118 : 29 - 48
  • [39] Quasicrystalline phase-change memory
    Eun-Sung Lee
    Joung E. Yoo
    Du S. Yoon
    Sung D. Kim
    Yongjoo Kim
    Soobin Hwang
    Dasol Kim
    Hyeong-Chai Jeong
    Won T. Kim
    Hye J. Chang
    Hoyoung Suh
    Dae-Hong Ko
    Choonghee Cho
    Yongjoon Choi
    Do H. Kim
    Mann-Ho Cho
    Scientific Reports, 10
  • [40] Outstanding phase-change behaviors of GaGeSbTe material for phase-change memory application
    Fang, Wencheng
    Song, Sannian
    Zhao, Jin
    Li, Chengxing
    Cai, Daolin
    Song, Zhitang
    MATERIALS RESEARCH BULLETIN, 2022, 149