Optimization of five-parameter BRDF model based on hybrid GA-PSO algorithm

被引:30
|
作者
Liu, Yuying [1 ]
Dai, Jingjing [1 ]
Zhao, Sisi [2 ]
Zhang, Jinghao [2 ]
Shang, Weidong [2 ]
Li, Tong [2 ]
Zheng, Yongchao [2 ]
Lan, Tian [1 ]
Wang, Zhiyong [1 ]
机构
[1] Beijing Univ Technol, Inst Adv Technol Semicond Opt & Elect, Inst Laser Engn, Beijing 100020, Peoples R China
[2] Beijing Inst Space Mech & Elect, Beijing 100094, Peoples R China
来源
OPTIK | 2020年 / 219卷
关键词
BRDF; Five-parameter model; Hybrid GA-PSO algorithm; Space targets;
D O I
10.1016/j.ijleo.2020.164978
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
The bidirectional reflection distribution function is usually used to analyze the reflection characteristics of materials. In many cases, the BRDF models are optimized by fitting parameters. We introduced a hybrid particle swarm algorithm (GA-PSO) combining genetic algorithm and particle swarm algorithm to optimize the parameters of the five-parameter model. In order to verify the performance of the hybrid particle swarm optimization algorithm, we measured two different materials of space targets to get the experimental BRDF values. Then we simulated the parameters by using the genetic algorithm, particle swarm algorithm, and hybrid particle swarm algorithm respectively. The fitting results show that the hybrid particle swarm algorithm is better than genetic algorithm and particle swarm algorithm in accuracy and convergence speed under the same condition.
引用
收藏
页数:6
相关论文
共 50 条
  • [31] Liquid Level Control of Three Tank System Using Hybrid GA-PSO Algorithm
    Jatoth, Ravi Kumar
    Jain, Ayush Kumar
    Phanindra, T.
    2013 4TH NIRMA UNIVERSITY INTERNATIONAL CONFERENCE ON ENGINEERING (NUICONE 2013), 2013,
  • [32] Analysis of Photovoltaic Five-Parameter Model
    Niccolai, Alessandro
    Dolara, Alberto
    Grimaccia, Francesco
    2018 INTERNATIONAL CONFERENCE ON SMART SYSTEMS AND TECHNOLOGIES (SST), 2018, : 205 - 210
  • [33] HYBRID GA-PSO ALGORITHM FOR WIND FARM MICRO-SITING IN COMPLEX TERRAIN
    Hu W.
    Yang Q.
    Nie B.
    Chen H.
    Yan B.
    Xu Z.
    Taiyangneng Xuebao/Acta Energiae Solaris Sinica, 2024, 45 (05): : 118 - 125
  • [34] A FUZZY HYBRID GA-PSO ALGORITHM FOR MULTI-OBJECTIVE AGV SCHEDULING IN FMS
    Mousavi, M.
    Yap, H. J.
    Musa, S. N.
    Dawal, S. Z. M.
    INTERNATIONAL JOURNAL OF SIMULATION MODELLING, 2017, 16 (01) : 58 - 71
  • [35] Genetic Algorithm-Particle Swarm Optimization (GA-PSO) for Economic Load Dispatch
    Younes, Mimoun
    Benhamida, Farid
    PRZEGLAD ELEKTROTECHNICZNY, 2011, 87 (10): : 369 - 372
  • [36] A comparative study on hybrid GA-PSO performance for stand-alone hybrid energy systems optimization
    Guven, Aykut Fatih
    Yorukeren, Nuran
    SIGMA JOURNAL OF ENGINEERING AND NATURAL SCIENCES-SIGMA MUHENDISLIK VE FEN BILIMLERI DERGISI, 2024, 42 (05): : 1410 - 1438
  • [37] FPGA-Based Hybrid GA-PSO Algorithm and Its Application to Global Path Planning for Mobile Robots
    Huang, Hsu-Chih
    PRZEGLAD ELEKTROTECHNICZNY, 2012, 88 (7B): : 281 - 284
  • [38] Mining high utility itemsets using Genetic Algorithm Based-Particle Swarm Optimization (GA-PSO)
    Subramanian, Kannimuthu
    Kandhasamy, Premalatha
    JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2023, 44 (01) : 1169 - 1189
  • [39] Optimization study of thermal-storage PV-CSP integrated system based on GA-PSO algorithm
    Liu, Hongtao
    Zhai, Rongrong
    Fu, Jiaxin
    Wang, Yulong
    Yang, Yongping
    SOLAR ENERGY, 2019, 184 : 391 - 409
  • [40] Architecture Exploration Based on GA-PSO Optimization, ANN Modeling, and Static Scheduling
    Elhossini, Ahmed
    Areibi, Shawki
    Dony, Robert
    VLSI DESIGN, 2013, Hindawi Limited, 410 Park Avenue, 15th Floor, 287 pmb, New York, NY 10022, United States (2013)