Statistical models for forecasting pigeonpea yield in Varanasi region

被引:0
|
作者
Pritykumari [1 ,3 ]
Mishra, G. C. [1 ]
Srivastava, C. P. [2 ]
机构
[1] Banaras Hindu Univ, Inst Agr Sci, Dept Farm Engn, Sect Agr Stat, Varanasi 221005, Uttar Pradesh, India
[2] Banaras Hindu Univ, Inst Agr Sci, Dept Entomol & Agr Zool, Varanasi 221005, Uttar Pradesh, India
[3] Gujarat Agr Univ, Coll Hort, Anand 388110, Gujarat, India
来源
JOURNAL OF AGROMETEOROLOGY | 2016年 / 18卷 / 02期
关键词
Artificial neural network (ANN); autoregressive integrated moving average (ARIMA) model; regression model andpigeonpea yield; NETWORKS; DISTRICT;
D O I
暂无
中图分类号
S3 [农学(农艺学)];
学科分类号
0901 ;
摘要
Present study deals with different linear and non-linear statistical models like multiple linear regression (MLR) model, autoregressive integrated moving average (ARIMA) model and artificial neural network (ANN) for forecastingpigeon pea yield grown in Varanasi region of Uttar Pradesh using 27 years of data (1985-86 to 2011-12). The performance of the model was assessed by root mean squared error (RMSE). On the basis of empirical studies, ANN was found to be best suitable model having lowest RMSE with forecasted yield during the year 2012-13 for Varanasi region.
引用
收藏
页码:306 / 310
页数:5
相关论文
共 50 条
  • [21] Climate-based statistical regression models for crop yield forecasting of coffee in humid tropical Kerala, India
    M. Jayakumar
    M. Rajavel
    U. Surendran
    International Journal of Biometeorology, 2016, 60 : 1943 - 1952
  • [23] YIELD FORECASTING BY THE STATISTICAL REPORTING SERVICE, USDA - METHODOLOGY AND CONCERNS
    FECSO, R
    BIOMETRICS, 1985, 41 (02) : 573 - 573
  • [24] Ragi and groundnut yield forecasting in Karnataka- statistical model
    Rajegowda, M. B.
    Soumya, D. V.
    Padmashri, H. S.
    Gowda, N. A. Janardhana
    Nagesha, L.
    JOURNAL OF AGROMETEOROLOGY, 2014, 16 (02): : 203 - 206
  • [25] Statistical modelling for forecasting of wheat yield based on weather variables
    Paul, Ranjit Kumar
    Prajneshu
    Ghosh, Himadri
    INDIAN JOURNAL OF AGRICULTURAL SCIENCES, 2013, 83 (02): : 180 - 183
  • [26] Statistical spring wheat yield forecasting for the Canadian prairie provinces
    Qian, Budong
    De Jong, Reinder
    Warren, Richard
    Chipanshi, Aston
    Hill, Harvey
    AGRICULTURAL AND FOREST METEOROLOGY, 2009, 149 (6-7) : 1022 - 1031
  • [27] VARIABILITY AND ASSOCIATION BETWEEN YIELD AND YIELD COMPONENTS IN PIGEONPEA
    DANI, RG
    INDIAN JOURNAL OF AGRICULTURAL SCIENCES, 1979, 49 (07): : 507 - 510
  • [28] COMPARISON OF THE FORECASTING ABILITY OF VARIOUS RBF NNW MODELS WITH STATISTICAL MODELS
    Marcek, Milan
    Marcek, Dusan
    Matusik, Petr
    EIGHTH INTERNATIONAL CONFERENCE ON SOFT COMPUTING APPLIED IN COMPUTER AND ECONOMIC ENVIRONMENTS, 2010, : 91 - 96
  • [29] Interpretability of deep learning models for crop yield forecasting
    Paudel, Dilli
    de Wit, Allard
    Boogaard, Hendrik
    Marcos, Diego
    Osinga, Sjoukje
    Athanasiadis, Ioannis N.
    COMPUTERS AND ELECTRONICS IN AGRICULTURE, 2023, 206
  • [30] Forecasting Sugarcane Yield of Tamilnadu Using ARIMA Models
    K. K. Suresh
    S. R. Krishna Priya
    Sugar Tech, 2011, 13 : 23 - 26