Statistical models for forecasting pigeonpea yield in Varanasi region

被引:0
|
作者
Pritykumari [1 ,3 ]
Mishra, G. C. [1 ]
Srivastava, C. P. [2 ]
机构
[1] Banaras Hindu Univ, Inst Agr Sci, Dept Farm Engn, Sect Agr Stat, Varanasi 221005, Uttar Pradesh, India
[2] Banaras Hindu Univ, Inst Agr Sci, Dept Entomol & Agr Zool, Varanasi 221005, Uttar Pradesh, India
[3] Gujarat Agr Univ, Coll Hort, Anand 388110, Gujarat, India
来源
JOURNAL OF AGROMETEOROLOGY | 2016年 / 18卷 / 02期
关键词
Artificial neural network (ANN); autoregressive integrated moving average (ARIMA) model; regression model andpigeonpea yield; NETWORKS; DISTRICT;
D O I
暂无
中图分类号
S3 [农学(农艺学)];
学科分类号
0901 ;
摘要
Present study deals with different linear and non-linear statistical models like multiple linear regression (MLR) model, autoregressive integrated moving average (ARIMA) model and artificial neural network (ANN) for forecastingpigeon pea yield grown in Varanasi region of Uttar Pradesh using 27 years of data (1985-86 to 2011-12). The performance of the model was assessed by root mean squared error (RMSE). On the basis of empirical studies, ANN was found to be best suitable model having lowest RMSE with forecasted yield during the year 2012-13 for Varanasi region.
引用
收藏
页码:306 / 310
页数:5
相关论文
共 50 条
  • [1] Forecasting models for predicting pod damage of pigeonpea in Varanasi region
    Kumari, Prity
    Mishra, G. C.
    Srivastava, C. P.
    JOURNAL OF AGROMETEOROLOGY, 2017, 19 (03): : 265 - 269
  • [2] Statistical Models for Forecasting Mango and Banana Yield of Karnataka, India
    Rathod, S.
    Mishra, G. C.
    JOURNAL OF AGRICULTURAL SCIENCE AND TECHNOLOGY, 2018, 20 (04): : 803 - 816
  • [3] Analysis of statistical models for forecasting PM10 in Kototabang region
    Alfiandy, S.
    Davi, R. S.
    NATIONAL SEMINAR ON PHYSICS 2019, 2020, 1434
  • [4] Forecasting sunflower grain yield using remote sensing data and statistical models
    Debaeke, P.
    Attia, F.
    Champolivier, L.
    Dejoux, J-F
    Micheneau, A.
    Al Bitar, A.
    Trepos, R.
    EUROPEAN JOURNAL OF AGRONOMY, 2023, 142
  • [5] STATISTICAL FORECASTING MODELS - REPLY
    ARON, RH
    ARON, IM
    JOURNAL OF THE AIR POLLUTION CONTROL ASSOCIATION, 1978, 28 (11): : 1093 - 1093
  • [6] Forecasting the yield curve for the Euro region
    Tabak, B. M.
    Sollaci, A. B.
    Gomes, G. M.
    Cajueiro, D. O.
    ECONOMICS LETTERS, 2012, 117 (02) : 513 - 516
  • [7] Evaluating statistical and machine learning techniques for sugarcane yield forecasting in the tarai region of North India
    Satpathi, Anurag
    Chand, Neha
    Setiya, Parul
    Ranjan, Rajeev
    Nain, Ajeet Singh
    Vishwakarma, Dinesh Kumar
    Saleem, Kashif
    Obaidullah, Ahmad J.
    Yadav, Krishna Kumar
    Kisi, Ozgur
    COMPUTERS AND ELECTRONICS IN AGRICULTURE, 2025, 229
  • [8] A Study on Statistical Forecasting Models of PM10 in Pohang Region by the Variable Transformation
    Lee, Yung-Seop
    Kim, Hyun-Goo
    Park, Jong-Seok
    Kim, Hee-Kyung
    JOURNAL OF KOREAN SOCIETY FOR ATMOSPHERIC ENVIRONMENT, 2006, 22 (05) : 614 - 626
  • [9] Agrometeorological Models for Forecasting Coffee Yield
    de Oliveira Aparecido, Lucas Eduardo
    Rolim, Glauco de Souza
    Camargo Lamparelli, Rubens Augusto
    de Souza, Paulo Sergio
    dos Santos, Eder Ribeiro
    AGRONOMY JOURNAL, 2017, 109 (01) : 249 - 258
  • [10] Statistical Surveillance of Volatility Forecasting Models
    Golosnoy, Vasyl
    Okhrin, Iryna
    Schmid, Wolfgang
    JOURNAL OF FINANCIAL ECONOMETRICS, 2012, 10 (03) : 513 - 543