Fractal behavior of the shortest path between two lines in percolation systems

被引:7
|
作者
Paul, G [1 ]
Havlin, S
Stanley, HE
机构
[1] Boston Univ, Ctr Polymer Studies, Boston, MA 02215 USA
[2] Boston Univ, Dept Phys, Boston, MA 02215 USA
[3] Bar Ilan Univ, Minerva Ctr, Ramat Gan, Israel
[4] Bar Ilan Univ, Dept Phys, Ramat Gan, Israel
来源
PHYSICAL REVIEW E | 2002年 / 65卷 / 06期
关键词
D O I
10.1103/PhysRevE.65.066105
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Using Monte Carlo simulations, we determine the scaling form for the probability distribution of the shortest path l between two lines in a three-dimensional percolation system at criticality; the two lines can have arbitrary positions, orientations, and lengths. We find that the probability distributions can exhibit up to four distinct power-law regimes (separated by crossover regimes) with exponents depending on the relative orientations of the lines. We explain this rich fractal behavior with scaling arguments.
引用
收藏
页码:1 / 066105
页数:8
相关论文
共 50 条
  • [21] Exact critical exponent for the shortest-path scaling function in percolation
    Ziff, RM
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1999, 32 (43): : L457 - L459
  • [22] Probability distribution of the shortest path on the percolation cluster, its backbone, and skeleton
    Porto, M
    Havlin, S
    Roman, HE
    Bunde, A
    PHYSICAL REVIEW E, 1998, 58 (05): : R5205 - R5208
  • [23] Percolation Conductivity and Fractal Behavior in an YBaCuO Sample
    Patapis, S. K.
    Moraitakis, E.
    Vekinis, G.
    Niarchos, D.
    Modern Physics Letter B, 11 (12):
  • [24] Percolation conductivity and fractal behavior in an YBaCuO sample
    Patapis, SK
    Moraitakis, E
    Vekinis, G
    Niarchos, D
    Clippe, P
    MODERN PHYSICS LETTERS B, 1997, 11 (12): : 511 - 519
  • [25] An algebraic method to compute a shortest path of local flips between two tilings
    Rémila, E
    PROCEEDINGS OF THE ELEVENTH ANNUAL ACM-SIAM SYMPOSIUM ON DISCRETE ALGORITHMS, 2000, : 646 - 653
  • [26] Finding the detour-critical edge of a shortest path between two nodes
    Nardelli, E
    Proietti, G
    Widmayer, P
    INFORMATION PROCESSING LETTERS, 1998, 67 (01) : 51 - 54
  • [27] Determining the shortest path between two points using ant colony algorithm
    Chu, XS
    Liu, CG
    Li, L
    ISTM/2005: 6TH INTERNATIONAL SYMPOSIUM ON TEST AND MEASUREMENT, VOLS 1-9, CONFERENCE PROCEEDINGS, 2005, : 2925 - 2928
  • [28] UNIVERSAL BEHAVIOR OF THE SHORTEST-PATH AGGREGATION
    WANG, XR
    WANG, XF
    PHYSICAL REVIEW A, 1992, 45 (02): : 1274 - 1277
  • [29] Tracer dispersion between two lines in two-dimensional percolation porous media
    Liu, ZF
    Wang, XH
    Mao, P
    Wu, QS
    CHINESE PHYSICS LETTERS, 2003, 20 (11) : 1969 - 1972
  • [30] Shortest path fractal dimension for randomly crumpled thin paper sheets
    Sanchez-Chavez, H. D.
    Flores-Cano, L.
    REVISTA MEXICANA DE FISICA, 2018, 64 (04) : 415 - 419