Fractal behavior of the shortest path between two lines in percolation systems

被引:7
|
作者
Paul, G [1 ]
Havlin, S
Stanley, HE
机构
[1] Boston Univ, Ctr Polymer Studies, Boston, MA 02215 USA
[2] Boston Univ, Dept Phys, Boston, MA 02215 USA
[3] Bar Ilan Univ, Minerva Ctr, Ramat Gan, Israel
[4] Bar Ilan Univ, Dept Phys, Ramat Gan, Israel
来源
PHYSICAL REVIEW E | 2002年 / 65卷 / 06期
关键词
D O I
10.1103/PhysRevE.65.066105
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Using Monte Carlo simulations, we determine the scaling form for the probability distribution of the shortest path l between two lines in a three-dimensional percolation system at criticality; the two lines can have arbitrary positions, orientations, and lengths. We find that the probability distributions can exhibit up to four distinct power-law regimes (separated by crossover regimes) with exponents depending on the relative orientations of the lines. We explain this rich fractal behavior with scaling arguments.
引用
收藏
页码:1 / 066105
页数:8
相关论文
共 50 条
  • [1] Shortest-path fractal dimension for percolation in two and three dimensions
    Zhou, Zongzheng
    Yang, Ji
    Deng, Youjin
    Ziff, Robert M.
    PHYSICAL REVIEW E, 2012, 86 (06):
  • [2] FLORY CALCULATION OF THE FRACTAL DIMENSIONALITY OF THE SHORTEST-PATH IN A PERCOLATION CLUSTER
    ROUX, S
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1985, 18 (07): : L395 - L397
  • [3] THE FRACTAL BEHAVIOR OF THE SHORTEST-PATH AGGREGATION - SIMULATIONS AND RG CALCULATIONS
    WANG, XR
    PHYSICA A, 1994, 205 (1-3): : 380 - 390
  • [4] Shortest-Path Percolation on Random Networks
    Kim, Minsuk
    Radicchi, Filippo
    Physical Review Letters, 2024, 133 (04)
  • [5] Sequential disruption of the shortest path in critical percolation
    Gschwend, Oliver
    Herrmann, Hans J.
    PHYSICAL REVIEW E, 2019, 100 (03)
  • [6] From the divergence between two measures to the shortest path between two observables
    Abadi, Miguel
    Lambert, Rodrigo
    ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2019, 39 : 1729 - 1744
  • [7] Optimal path in strong disorder and shortest path in invasion percolation with trapping
    Porto, M
    Havlin, S
    Schwarzer, S
    Bunde, A
    PHYSICAL REVIEW LETTERS, 1997, 79 (21) : 4060 - 4062
  • [8] DISTRIBUTION OF SHORTEST-PATH LENGTHS IN PERCOLATION ON A HIERARCHICAL LATTICE
    BARMA, M
    RAY, P
    PHYSICAL REVIEW B, 1986, 34 (05): : 3403 - 3407
  • [9] THE FRACTAL DIMENSION OF THE MINIMUM PATH IN TWO-DIMENSIONAL AND 3-DIMENSIONAL PERCOLATION
    HERRMANN, HJ
    STANLEY, HE
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1988, 21 (17): : L829 - L833
  • [10] Pair connectedness and shortest-path scaling in critical percolation
    Grassberger, P
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1999, 32 (35): : 6233 - 6238