A Semi-parametric Bayesian Approach for Differential Expression Analysis of RNA-seq Data

被引:5
|
作者
Liu, Fangfang [1 ]
Wang, Chong [1 ,2 ]
Liu, Peng [1 ]
机构
[1] Iowa State Univ, Dept Stat, Ames, IA 50011 USA
[2] Iowa State Univ, Dept Vet Diagnost & Prod Anim Med, Ames, IA 50011 USA
基金
美国国家科学基金会; 美国国家卫生研究院;
关键词
Bayesian nonparametric method; Differential expression; Dirichlet process; Posterior probability; RNA-seq; DEVELOPMENTAL DYNAMICS; STATISTICAL-METHODS; DISTRIBUTIONS; NORMALIZATION; MIXTURES; MODEL;
D O I
10.1007/s13253-015-0227-0
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
RNA-sequencing (RNA-seq) technologies have revolutionized the way that agricultural biologists study gene expression as well as generated a tremendous amount of data waiting for analysis. Detecting differentially expressed genes is one of the fundamental steps in RNA-seq data analysis. In this paper, we model the count data from RNA-seq experiments with a Poisson-Gamma hierarchical model, or equivalently, a negative binomial model. We derive a semi-parametric Bayesian approach with a Dirichlet process as the prior model for the distribution of fold changes between the two treatment means. An inference strategy using Gibbs algorithm is developed for differential expression analysis. The results of several simulation studies show that our proposed method outperforms other methods including the popularly applied edgeR and DESeq methods. We also discuss an application of our method to a dataset that compares gene expression between bundle sheath and mesophyll cells in maize leaves. Supplementary materials accompanying this paper appear online.
引用
收藏
页码:555 / 576
页数:22
相关论文
共 50 条
  • [31] Bayesian semi-parametric ROC analysis
    Erkanli, Alaattin
    Sung, Minje
    Costello, E. Jane
    Angold, Adrian
    STATISTICS IN MEDICINE, 2006, 25 (22) : 3905 - 3928
  • [32] A semi-parametric Bayesian approach to average bioequivalence
    Ghosh, Pulak
    Rosner, Gary L.
    STATISTICS IN MEDICINE, 2007, 26 (06) : 1224 - 1236
  • [33] Power analysis for RNA-Seq differential expression studies
    Yu, Lianbo
    Fernandez, Soledad
    Brock, Guy
    BMC BIOINFORMATICS, 2017, 18
  • [34] Bayesian estimation of differential transcript usage from RNA-seq data
    Papastamoulis, Panagiotis
    Rattray, Magnus
    STATISTICAL APPLICATIONS IN GENETICS AND MOLECULAR BIOLOGY, 2017, 16 (5-6) : 387 - 405
  • [35] Power analysis for RNA-Seq differential expression studies
    Lianbo Yu
    Soledad Fernandez
    Guy Brock
    BMC Bioinformatics, 18
  • [36] Differential expression analysis of RNA-seq data at single-base resolution
    Frazee, Alyssa C.
    Sabunciyan, Sarven
    Hansen, Kasper D.
    Irizarry, Rafael A.
    Leek, Jeffrey T.
    BIOSTATISTICS, 2014, 15 (03) : 413 - 426
  • [37] Robustness of differential gene expression analysis of RNA-seq
    Stupnikov, A.
    McInerney, C. E.
    Savage, K. I.
    McIntosh, S. A.
    Emmert-Streib, F.
    Kennedy, R.
    Salto-Tellez, M.
    Prise, K. M.
    McArt, D. G.
    COMPUTATIONAL AND STRUCTURAL BIOTECHNOLOGY JOURNAL, 2021, 19 : 3470 - 3481
  • [38] SwarnSeq: An improved statistical approach for differential expression analysis of single-cell RNA-seq data
    Das, Samarendra
    Rai, Shesh N.
    GENOMICS, 2021, 113 (03) : 1308 - 1324
  • [39] An iteration normalization and test method for differential expression analysis of RNA-seq data
    Yan Zhou
    Nan Lin
    Baoxue Zhang
    BioData Mining, 7
  • [40] Comprehensive evaluation of differential gene expression analysis methods for RNA-seq data
    Franck Rapaport
    Raya Khanin
    Yupu Liang
    Mono Pirun
    Azra Krek
    Paul Zumbo
    Christopher E Mason
    Nicholas D Socci
    Doron Betel
    Genome Biology, 14