Generalized Matrix Factorization: efficient algorithms for fitting generalized linear latent variable models to large data arrays

被引:0
|
作者
Kidzinski, Lukasz [1 ]
Hui, Francis K. C. [2 ]
Warton, David I. [3 ,4 ]
Hastie, Trevor J. [5 ]
机构
[1] Stanford Univ, Dept Bioengn, Stanford, CA 94305 USA
[2] Australian Natl Univ, Res Sch Finance Actuarial Studies & Stat, Canberra, ACT 2601, Australia
[3] Univ New South Wales, Sch Math & Stat, Sydney, NSW 2052, Australia
[4] Univ New South Wales, Evolut & Ecol Res Ctr, Sydney, NSW 2052, Australia
[5] Stanford Univ, Dept Stat & Biomed Data Sci, Stanford, CA 94305 USA
基金
美国国家科学基金会; 美国国家卫生研究院; 澳大利亚研究理事会;
关键词
Generalized Linear Models; Generalized Linear Mixed-effect Models; Nuclear Norm; Penalized Quasi-Likelihood; PENALIZED LIKELIHOOD; REGULARIZATION; INFORMATION; REGRESSION; INFERENCE;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Unmeasured or latent variables are often the cause of correlations between multivariate measurements, which are studied in a variety of fields such as psychology, ecology, and medicine. For Gaussian measurements, there are classical tools such as factor analy-sis or principal component analysis with a well-established theory and fast algorithms. Generalized Linear Latent Variable models (GLLVMs) generalize such factor models to non-Gaussian responses. However, current algorithms for estimating model parameters in GLLVMs require intensive computation and do not scale to large data sets with thousands of observational units or responses. In this article, we propose a new approach for fitting GLLVMs to high-dimensional data sets, based on approximating the model using penalized quasi-likelihood and then using a Newton method and Fisher scoring to learn the model parameters. Computationally, our method is noticeably faster and more stable, enabling GLLVM fits to much larger matrices than previously possible. We apply our method on a data set of 48,000 observational units with over 2,000 observed species in each unit and find that most of the variability can be explained with a handful of factors. We publish an easy-to-use implementation of our proposed fitting algorithms.
引用
收藏
页数:29
相关论文
共 50 条
  • [1] Generalized Matrix Factorization: efficient algorithms for fitting generalized linear latent variable models to large data arrays
    Kidziński, Lukasz
    Hui, Francis K.C.
    Warton, David I.
    Hastie, Trevor J.
    Journal of Machine Learning Research, 2022, 23
  • [2] Efficient estimation of generalized linear latent variable models
    Niku, Jenni
    Brooks, Wesley
    Herliansyah, Riki
    Hui, Francis K. C.
    Taskinen, Sara
    Warton, David I.
    PLOS ONE, 2019, 14 (05):
  • [3] Estimation of generalized linear latent variable models
    Huber, P
    Ronchetti, E
    Victoria-Feser, MP
    JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 2004, 66 : 893 - 908
  • [4] Variational Approximations for Generalized Linear Latent Variable Models
    Hui, Francis K. C.
    Warton, David I.
    Ormerod, John T.
    Haapaniemi, Viivi
    Taskinen, Sara
    JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2017, 26 (01) : 35 - 43
  • [5] Parameter constraints in generalized linear latent variable models
    Tsonaka, R.
    Moustaki, I.
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2007, 51 (09) : 4164 - 4177
  • [6] Generalized Linear Latent Variable Models for Multivariate Count and Biomass Data in Ecology
    Jenni Niku
    David I. Warton
    Francis K. C. Hui
    Sara Taskinen
    Journal of Agricultural, Biological and Environmental Statistics, 2017, 22 : 498 - 522
  • [7] Generalized Linear Latent Variable Models for Multivariate Count and Biomass Data in Ecology
    Niku, Jenni
    Warton, David I.
    Hui, Francis K. C.
    Taskinen, Sara
    JOURNAL OF AGRICULTURAL BIOLOGICAL AND ENVIRONMENTAL STATISTICS, 2017, 22 (04) : 498 - 522
  • [8] Generalized Linear Latent Variable Models with Flexible Distribution of Latent Variables
    Irincheeva, Irina
    Cantoni, Eva
    Genton, Marc G.
    SCANDINAVIAN JOURNAL OF STATISTICS, 2012, 39 (04) : 663 - 680
  • [9] Generalized latent variable models with non-linear effects
    Rizopoulos, Dimitris
    Moustaki, Irini
    BRITISH JOURNAL OF MATHEMATICAL & STATISTICAL PSYCHOLOGY, 2008, 61 : 415 - 438
  • [10] Generalized linear latent variable models for repeated measures of spatially correlated multivariate data
    Zhu, J
    Eickhoff, JC
    Yan, P
    BIOMETRICS, 2005, 61 (03) : 674 - 683