Variational Approximations for Generalized Linear Latent Variable Models

被引:50
|
作者
Hui, Francis K. C. [1 ]
Warton, David I. [2 ,3 ]
Ormerod, John T. [4 ,5 ]
Haapaniemi, Viivi [6 ]
Taskinen, Sara [6 ]
机构
[1] Australian Natl Univ, Inst Math Sci, Canberra, ACT 0200, Australia
[2] Univ New South Wales, Sch Math & Stat, Sydney, NSW, Australia
[3] Univ New South Wales, Evolut & Ecol Res Ctr, Sydney, NSW, Australia
[4] Univ Sydney, Sch Math & Stat, Sydney, NSW, Australia
[5] Univ Melbourne, ARC Ctr Excellence Math & Stat Frontiers, Parkville, Vic, Australia
[6] Univ Jyvaskyla, Dept Math & Stat, Jyvaskyla, Finland
基金
芬兰科学院; 澳大利亚研究理事会;
关键词
Factor analysis; Item response theory; Latent trait; Multivariate analysis; Ordination; Variational approximation; ALGORITHM;
D O I
10.1080/10618600.2016.1164708
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Generalized linear latent variable models (GLLVMs) are a powerful class of models for understanding the relationships among multiple, correlated responses. Estimation, however, presents a major challenge, as the marginal likelihood does not possess a closed form for nonnormal responses. We propose a variational approximation (VA) method for estimating GLLVMs. For the common cases of binary, ordinal, and overdispersed count data, we derive fully closed-form approximations to the marginal log-likelihood function in each case. Compared to other methods such as the expectation-maximization algorithm, estimation using VA is fast and straightforward to implement. Predictions of the latent variables and associated uncertainty estimates are also obtained as part of the estimation process. Simulations show that VA estimation performs similar to or better than some currently availablemethods, both at predicting the latent variables and estimating their corresponding coefficients. They also show that VA estimation offers dramatic reductions in computation time particularly if the number of correlated responses is large relative to the number of observational units. We apply the variational approach to two datasets, estimating GLLVMs to understanding the patterns of variation in youth gratitude and for constructing ordination plots in bird abundance data. R code for performing VA estimation of GLLVMs is available online. Supplementary materials for this article are available online.
引用
收藏
页码:35 / 43
页数:9
相关论文
共 50 条
  • [1] Estimation of generalized linear latent variable models
    Huber, P
    Ronchetti, E
    Victoria-Feser, MP
    JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 2004, 66 : 893 - 908
  • [2] Efficient estimation of generalized linear latent variable models
    Niku, Jenni
    Brooks, Wesley
    Herliansyah, Riki
    Hui, Francis K. C.
    Taskinen, Sara
    Warton, David I.
    PLOS ONE, 2019, 14 (05):
  • [3] Parameter constraints in generalized linear latent variable models
    Tsonaka, R.
    Moustaki, I.
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2007, 51 (09) : 4164 - 4177
  • [4] Generalized Linear Latent Variable Models with Flexible Distribution of Latent Variables
    Irincheeva, Irina
    Cantoni, Eva
    Genton, Marc G.
    SCANDINAVIAN JOURNAL OF STATISTICS, 2012, 39 (04) : 663 - 680
  • [5] Fast and universal estimation of latent variable models using extended variational approximations
    Pekka Korhonen
    Francis K. C. Hui
    Jenni Niku
    Sara Taskinen
    Statistics and Computing, 2023, 33
  • [6] Fast and universal estimation of latent variable models using extended variational approximations
    Korhonen, Pekka
    Hui, Francis K. C.
    Niku, Jenni
    Taskinen, Sara
    STATISTICS AND COMPUTING, 2023, 33 (01)
  • [7] Generalized latent variable models with non-linear effects
    Rizopoulos, Dimitris
    Moustaki, Irini
    BRITISH JOURNAL OF MATHEMATICAL & STATISTICAL PSYCHOLOGY, 2008, 61 : 415 - 438
  • [8] Explicit estimating equations for semiparametric generalized linear latent variable models
    Ma, Yanyuan
    Genton, Marc G.
    JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 2010, 72 : 475 - 495
  • [9] A Review of Generalized Linear Latent Variable Models and Related Computational Approaches
    Korhonen, Pekka
    Nordhausen, Klaus
    Taskinen, Sara
    WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL STATISTICS, 2024, 16 (06):
  • [10] Generalized Linear Latent Variable Models for Multivariate Count and Biomass Data in Ecology
    Niku, Jenni
    Warton, David I.
    Hui, Francis K. C.
    Taskinen, Sara
    JOURNAL OF AGRICULTURAL BIOLOGICAL AND ENVIRONMENTAL STATISTICS, 2017, 22 (04) : 498 - 522