A priori error estimation for the dual mixed finite element method of the elastodynamic problem in a polygonal domain, I

被引:9
|
作者
Boulaajine, L. [2 ]
Farhloul, M. [1 ]
Paquet, L. [2 ]
机构
[1] Univ Moncton, Dept Math & Stat, Moncton, NB E1A 3E9, Canada
[2] Univ Valenciennes & Hainaut Cambresis, MACS, ISTV, F-59313 Valenciennes 9, France
关键词
Sobolev spaces; Elastodynamic; Dual mixed finite element; Newmark scheme; Lagrange multiplier; Hybrid formulation; Error estimation; ELASTICITY;
D O I
10.1016/j.cam.2009.03.013
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we analyze a new dual mixed formulation of the elastodynamic system in polygonal domains. In this formulation the symmetry of the strain tensor is relaxed by the rotation of the displacement. For the time discretization of this new dual mixed formulation, we use an explicit scheme. After the analysis of stability of the fully discrete scheme, L-infinity in time, L-2 in space a priori error estimates are derived for the approximation of the displacement, the strain, the pressure and the rotation. Numerical experiments confirm our theoretical predictions. (C) 2009 Elsevier Ltd. All rights reserved.
引用
收藏
页码:447 / 472
页数:26
相关论文
共 50 条
  • [21] A Priori Error Analysis of an Euler Implicit, Finite Element Approximation of the Unsteady Darcy Problem in an Axisymmetric Domain
    Orfi, Ajmia Younes
    Yakoubi, Driss
    ADVANCES IN APPLIED MATHEMATICS AND MECHANICS, 2018, 10 (02) : 301 - 321
  • [22] A priori error estimates of mixed finite element methods for nonlinear quadratic convex optimal control problem
    Zhang, H. W.
    Lu, Z. L.
    2008 5TH INTERNATIONAL CONFERENCE ON ELECTRICAL ENGINEERING, COMPUTING SCIENCE AND AUTOMATIC CONTROL (CCE 2008), 2008, : 1 - +
  • [23] An a priori error estimate for a monotone mixed finite-element discretization of a convection-diffusion problem
    Holst, Stefan
    NUMERISCHE MATHEMATIK, 2008, 109 (01) : 101 - 119
  • [24] A new a priori error analysis of nonconforming and mixed finite element methods
    Li, Mingxia
    Mao, Shipeng
    APPLIED MATHEMATICS LETTERS, 2013, 26 (01) : 32 - 37
  • [25] A priori error estimates for a mixed finite element discretization of the Richards’ equation
    Eckhard Schneid
    Peter Knabner
    Florin Radu
    Numerische Mathematik, 2004, 98 : 353 - 370
  • [26] A priori error estimates for a mixed finite element discretization of the Richards' equation
    Schneid, E
    Knabner, P
    Radu, F
    NUMERISCHE MATHEMATIK, 2004, 98 (02) : 353 - 370
  • [27] A priori error estimates of finite volume element method for bilinear parabolic optimal control problem
    Lu, Zuliang
    Xu, Ruixiang
    Hou, Chunjuan
    Xing, Lu
    AIMS MATHEMATICS, 2023, 8 (08): : 19374 - 19390
  • [28] Priori error estimation of finite element models from first principles
    Natl Aerospace Lab, Bangalore, India
    Sadhana, 3 (199-214):
  • [29] A PRIORI ERROR ESTIMATES FOR FINITE ELEMENT DISCRETIZATIONS OF A SHAPE OPTIMIZATION PROBLEM
    Kiniger, Bernhard
    Vexler, Boris
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2013, 47 (06): : 1733 - 1763
  • [30] A priori error estimation of finite element models from first principles
    Gangan Prathap
    Sadhana, 1999, 24 : 199 - 214