Statistical properties of a turbulent cascade

被引:89
|
作者
Friedrich, R [1 ]
Peinke, J [1 ]
机构
[1] UNIV BAYREUTH,D-95447 BAYREUTH,GERMANY
来源
PHYSICA D | 1997年 / 102卷 / 1-2期
关键词
turbulence; intermittency;
D O I
10.1016/S0167-2789(96)00235-7
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Statistical properties of a turbulent cascade are evaluated by considering the joint probability distribution p(v(1), L(1); v(2), L(2)) for two velocity increments v(1), v(2) of different length scales L(1), L(2). We present experimental evidence that the conditional probability distribution p(v(2), L(2)/v(1), L(1)) obeys a Chapman-Kolmogorov equation. We evaluate the Kramers-Moyal coefficients and show evidence that higher-order coefficients vanish except for the drift and diffusion coefficient. As a result the joint probability distributions obeys a Fokker-Planck equation. We calculate drift and diffusion coefficients and discuss their relationship to universal behaviour in the scaling region and to intermittency of the turbulent cascade.
引用
收藏
页码:147 / 155
页数:9
相关论文
共 50 条
  • [42] STATISTICAL PROPERTIES OF TEMPERATURE IN THE WALL REGION OF A TURBULENT BOUNDARY-LAYER
    SUBRAMANIAN, CS
    ANTONIA, RA
    TRANSACTIONS OF THE CANADIAN SOCIETY FOR MECHANICAL ENGINEERING, 1979, 5 (04) : 221 - 224
  • [43] Statistical properties of a cylindrical vector partially coherent beam in turbulent atmosphere
    Rong Chen
    Yiming Dong
    Fei Wang
    Yangjian Cai
    Applied Physics B, 2013, 112 : 247 - 259
  • [44] Dependence of the Properties of a Turbulent Cascade behind the Bow Shock on the Dynamics of the Solar Wind Parameters
    L. S. Rakhmanova
    M. O. Riazantseva
    G. N. Zastenker
    Yu. I. Yermolaev
    I. G. Lodkina
    Cosmic Research, 2020, 58 : 478 - 486
  • [45] Turbulent diffusion in the geostrophic inverse cascade
    Smith, KS
    Boccaletti, G
    Henning, CC
    Marinov, I
    Tam, CY
    Held, IM
    Vallis, GK
    JOURNAL OF FLUID MECHANICS, 2002, 469 : 13 - 48
  • [46] Ratchet effect in the inverse turbulent cascade
    Friedrich, R.
    CHEMICAL PHYSICS, 2010, 375 (2-3) : 587 - 590
  • [47] Translational invariance in turbulent cascade models
    Greiner, M
    Giesemann, J
    Lipa, P
    PHYSICAL REVIEW E, 1997, 56 (04): : 4263 - 4274
  • [48] Dependence of the Properties of a Turbulent Cascade behind the Bow Shock on the Dynamics of the Solar Wind Parameters
    Rakhmanova, L. S.
    Riazantseva, M. O.
    Zastenker, G. N.
    Yermolaev, Yu. I.
    Lodkina, I. G.
    COSMIC RESEARCH, 2020, 58 (06) : 478 - 486
  • [49] Dynamical network models of the turbulent cascade
    Gurcan, O. D.
    PHYSICA D-NONLINEAR PHENOMENA, 2021, 426
  • [50] A mechanism of dissipation of the perpendicular turbulent cascade
    Markovskii, SA
    Vasquez, BJ
    Smith, CW
    Hollweg, JV
    PROCEEDINGS OF THE CONFERENCE SOLAR WIND 11 - SOHO 16: CONNECTING SUN AND HELIOSPHERE, 2005, 592 : 177 - 180