On the transition from local regular to global irregular fluctuations

被引:24
|
作者
Pintus, P
Sands, D
de Vilder, R
机构
[1] Univ Cergy Pontoise, THEMA, F-95011 Cergy Pontoise, France
[2] Univ Orsay, Orsay, France
[3] CREST, INSEE, CNRS, F-92245 Paris, France
[4] CEPREMAP, CNRS, Paris, France
来源
关键词
endogenous cycles; bifurcations; OLG;
D O I
10.1016/S0165-1889(98)00071-2
中图分类号
F [经济];
学科分类号
02 ;
摘要
We present a general framework for understanding the transition from local regular to global irregular (chaotic) behaviour of nonlinear dynamical models in discrete time. The fundamental mechanism is the unfolding of quadratic tangencies between the stable and the unstable manifolds of periodic saddle points. To illustrate the relevance of the presented methods for analysing globally a class of dynamic economic models, we apply them to the infinite horizon model of Woodford (1988), (J. Economic Theory, 40, 128-137), amended by Grandmont et al. (1998), (J. Economic Theory, 80) to account for capital-labour substitution, so as to explain the appearance of irregular fluctuations, through homoclinic bifurcations, when parameter values are 'far' away from local bifurcation points. (C) 2000 Elsevier Science B.V. All rights reserved. JEL classification: E32.
引用
收藏
页码:247 / 272
页数:26
相关论文
共 50 条
  • [41] THEORY OF THE LIAPUNOV EXPONENTS OF HAMILTONIAN-SYSTEMS AND A NUMERICAL STUDY ON THE TRANSITION FROM REGULAR TO IRREGULAR CLASSICAL MOTION - COMMENT
    FEDDERSEN, HK
    FLESCH, R
    SALERNO, M
    CHRISTIANSEN, PL
    JOURNAL OF CHEMICAL PHYSICS, 1990, 92 (03): : 2117 - 2118
  • [42] THEORY OF THE LIAPUNOV EXPONENTS OF HAMILTONIAN-SYSTEMS AND A NUMERICAL STUDY ON THE TRANSITION FROM REGULAR TO IRREGULAR CLASSICAL MOTION - REPLY
    MEYER, HD
    JOURNAL OF CHEMICAL PHYSICS, 1987, 86 (12): : 7249 - 7249
  • [43] LIGHT-SCATTERING FROM PARTICLES OF REGULAR AND IRREGULAR SHAPE
    JAGGARD, DL
    HILL, C
    SHORTHILL, RW
    STUART, D
    GLANTZ, M
    ROSSWOG, F
    TAGGART, B
    HAMMOND, S
    ATMOSPHERIC ENVIRONMENT, 1981, 15 (12) : 2511 - 2519
  • [44] IRREGULAR AMPLITUDE FLUCTUATIONS OF MAGNETOELASTIC
    BOKOV, LA
    PROKOPOV, AR
    IZVESTIYA VYSSHIKH UCHEBNYKH ZAVEDENII FIZIKA, 1976, (04): : 136 - 137
  • [45] Local and global searches of approximate optimal designs of regular frames
    Ohsaki, M.
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2006, 67 (01) : 132 - 147
  • [46] ON THE GLOBAL DIMENSION OF ALGEBRAS OVER REGULAR LOCAL-RINGS
    DELAPENA, JA
    RAGGICARDENAS, A
    ILLINOIS JOURNAL OF MATHEMATICS, 1988, 32 (03) : 520 - 533
  • [47] A local global principle for regular operators in Hilbert C*-modules
    Kaad, Jens
    Lesch, Matthias
    JOURNAL OF FUNCTIONAL ANALYSIS, 2012, 262 (10) : 4540 - 4569
  • [48] GLOBAL AND LOCAL FLUCTUATIONS IN DISTRIBUTIONS FROM ULTRA-RELATIVISTIC HEAVY-ION INTERACTIONS
    IDH, J
    ALBRECHT, R
    AWES, TC
    BAKTASH, C
    BECKMANN, P
    BERGER, F
    BOCK, R
    CLAESSON, G
    CLEWING, G
    DRAGON, L
    EKLUND, A
    FERGUSON, R
    FRANZ, A
    GARPMAN, SIA
    GLASOW, R
    GUSTAFSSON, HA
    GUTBROD, HH
    JACOBS, P
    KAMPERT, KH
    KOLB, BW
    KRISTIANSSON, P
    LEE, IY
    LOHNER, H
    LUND, I
    OBENSHAIN, FE
    OSKARSSON, A
    OTTERLUND, I
    PEITZMANN, T
    PERSSON, S
    PLASIL, F
    POSKANZER, AM
    PURSCHKE, M
    RITTER, HG
    SAINI, S
    SANTO, R
    SCHMIDT, HR
    SIEMIARCZUK, T
    SORENSEN, SP
    STEFFENS, K
    STENLUND, E
    STUKEN, D
    TINKNELL, M
    YOUNG, GR
    PHYSICA SCRIPTA, 1990, T32 : 147 - 149
  • [49] Regularly irregular, regular and irregularly irregular - All at the same time!
    Sarkar, Rakesh
    Bhargava, Kartikeya
    JOURNAL OF ELECTROCARDIOLOGY, 2020, 62 : 30 - 32
  • [50] AMPLIFICATION OF FLUCTUATIONS NEAR THE LOCAL PHASE-TRANSITION POINT
    NECHAEV, VN
    FIZIKA TVERDOGO TELA, 1983, 25 (09): : 2718 - 2722