Coevolutionary information, protein folding landscapes, and the thermodynamics of natural selection

被引:109
|
作者
Morcos, Faruck [1 ]
Schafer, Nicholas P. [1 ,2 ]
Cheng, Ryan R. [1 ]
Onuchic, Jose N. [1 ,2 ,3 ,4 ]
Wolynes, Peter G. [1 ,2 ,3 ,4 ]
机构
[1] Rice Univ, Ctr Theoret Biol Phys, Houston, TX 77005 USA
[2] Rice Univ, Dept Chem, Houston, TX 77005 USA
[3] Rice Univ, Dept Phys & Astron, Houston, TX 77005 USA
[4] Rice Univ, Dept Biochem & Cell Biol, Houston, TX 77005 USA
基金
美国国家科学基金会; 美国国家卫生研究院;
关键词
energy landscape theory; information theory; selection temperature; funneled landscapes; elastic effects; STATISTICAL-MECHANICS; STRUCTURE PREDICTION; NONNATIVE INTERACTIONS; TERMINAL DOMAIN; SEQUENCE; EVOLUTION; DESIGN; MODELS; COOPERATIVITY; HETEROPOLYMER;
D O I
10.1073/pnas.1413575111
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The energy landscape used by nature over evolutionary timescales to select protein sequences is essentially the same as the one that folds these sequences into functioning proteins, sometimes in microseconds. Weshow that genomic data, physical coarse-grained free energy functions, and family-specific information theoretic models can be combined to give consistent estimates of energy landscape characteristics of natural proteins. One such characteristic is the effective temperature T-sel at which these foldable sequences have been selected in sequence space by evolution. T-sel quantifies the importance of folded-state energetics and structural specificity for molecular evolution. Across all protein families studied, our estimates for T-sel are well below the experimental folding temperatures, indicating that the energy landscapes of natural foldable proteins are strongly funneled toward the native state.
引用
收藏
页码:12408 / 12413
页数:6
相关论文
共 50 条
  • [11] Cunning simplicity of protein folding landscapes
    Bogatyreva, NS
    Finkelstein, AV
    PROTEIN ENGINEERING, 2001, 14 (08): : 521 - 523
  • [12] Protein Folding Landscapes in the Living Cell
    Ebbinghaus, Simon
    Gruebele, Martin
    JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2011, 2 (04): : 314 - 319
  • [13] Mapping heme protein folding landscapes
    Pletneva, E. V.
    Lee, J. C.
    Faraone-Mennella, J.
    Magyar, J. S.
    Pribisko, M. A.
    Kim, J. E.
    Winkler, Jay R.
    Gray, Harry B.
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2006, 231
  • [14] Fast folding experiments and the topography of protein folding energy landscapes
    Wolynes, PG
    LutheySchulten, Z
    Onuchic, JN
    CHEMISTRY & BIOLOGY, 1996, 3 (06): : 425 - 432
  • [15] Salt Effects on Protein Folding Thermodynamics
    Maity, Hiranmay
    Muttathukattil, Aswathy N.
    Reddy, Govardhan
    JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2018, 9 (17): : 5063 - 5070
  • [16] Thermodynamics of protein folding: a microscopic view
    Lazaridis, T
    Karplus, M
    BIOPHYSICAL CHEMISTRY, 2003, 100 (1-3) : 367 - 395
  • [17] Thermodynamics of a diffusional protein folding reaction
    Perl, D
    Jacob, M
    Bánó, M
    Stupák, M
    Antalík, M
    Schmid, FX
    BIOPHYSICAL CHEMISTRY, 2002, 96 (2-3) : 173 - 190
  • [18] Kinetics and Thermodynamics of Membrane Protein Folding
    Roman, Ernesto A.
    Gonzalez Flecha, F. Luis
    BIOMOLECULES, 2014, 4 (01): : 354 - 373
  • [19] Influence of Fluorination on the Thermodynamics of Protein Folding
    Buer, Benjamin C.
    Levin, Benjamin J.
    Marsh, E. Neil G.
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2012, 134 (31) : 13027 - 13034
  • [20] Thermodynamics of protein folding and molecular recognition
    Freire, E
    PURE AND APPLIED CHEMISTRY, 1997, 69 (11) : 2253 - 2261