Exponential localization in one-dimensional quasi-periodic optical lattices

被引:170
|
作者
Modugno, Michele [1 ,2 ]
机构
[1] Univ Florence, Dipartimento Fis, I-50019 Sesto Fiorentino, Italy
[2] Univ Florence, LENS, I-50019 Sesto Fiorentino, Italy
来源
NEW JOURNAL OF PHYSICS | 2009年 / 11卷
关键词
METAL-INSULATOR-TRANSITION; ANDERSON LOCALIZATION; SOLVABLE MODEL; MOTION; ATOMS;
D O I
10.1088/1367-2630/11/3/033023
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We investigate the localization properties of a one-dimensional bichromatic optical lattice in the tight-binding regime, by discussing how exponentially localized states emerge upon changing the degree of commensurability. We also review the mapping onto the discrete Aubry-Andre model, and provide evidence on how the momentum distribution gets modified in the crossover from extended to exponentially localized states. This analysis is relevant to the recent experiment on the Anderson localization of a noninteracting Bose-Einstein condensate in a quasi-periodic optical lattice (Roati et al 2008 Nature 453 895).
引用
收藏
页数:13
相关论文
共 50 条