An LSTM-Based Deep Learning Approach for Classifying Malicious Traffic at the Packet Level

被引:85
|
作者
Hwang, Ren-Hung [1 ]
Peng, Min-Chun [1 ]
Van-Linh Nguyen [1 ]
Chang, Yu-Lun [1 ]
机构
[1] Natl Chung Cheng Univ, Dept Comp Sci & Informat Engn, Chiayi 62102, Taiwan
来源
APPLIED SCIENCES-BASEL | 2019年 / 9卷 / 16期
关键词
deep learning for network security; long short-term memory; malicious traffic classification; NETWORK;
D O I
10.3390/app9163414
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Recently, deep learning has been successfully applied to network security assessments and intrusion detection systems (IDSs) with various breakthroughs such as using Convolutional Neural Networks (CNN) and Long Short-Term Memory (LSTM) to classify malicious traffic. However, these state-of-the-art systems also face tremendous challenges to satisfy real-time analysis requirements due to the major delay of the flow-based data preprocessing, i.e., requiring time for accumulating the packets into particular flows and then extracting features. If detecting malicious traffic can be done at the packet level, detecting time will be significantly reduced, which makes the online real-time malicious traffic detection based on deep learning technologies become very promising. With the goal of accelerating the whole detection process by considering a packet level classification, which has not been studied in the literature, in this research, we propose a novel approach in building the malicious classification system with the primary support of word embedding and the LSTM model. Specifically, we propose a novel word embedding mechanism to extract packet semantic meanings and adopt LSTM to learn the temporal relation among fields in the packet header and for further classifying whether an incoming packet is normal or a part of malicious traffic. The evaluation results on ISCX2012, USTC-TFC2016, IoT dataset from Robert Gordon University and IoT dataset collected on our Mirai Botnet show that our approach is competitive to the prior literature which detects malicious traffic at the flow level. While the network traffic is booming year by year, our first attempt can inspire the research community to exploit the advantages of deep learning to build effective IDSs without suffering significant detection delay.
引用
收藏
页数:14
相关论文
共 50 条
  • [21] LSTM-based traffic flow prediction with missing data
    Tian, Yan
    Zhang, Kaili
    Li, Jianyuan
    Lin, Xianxuan
    Yang, Bailin
    NEUROCOMPUTING, 2018, 318 : 297 - 305
  • [22] HELP: An LSTM-based approach to hyperparameter exploration in neural network learning
    Li, Wendi
    Ng, Wing W. Y.
    Wang, Ting
    Pelillo, Marcello
    Kwong, Sam
    NEUROCOMPUTING, 2021, 442 : 161 - 172
  • [23] An AutoEncoder and LSTM-Based Traffic Flow Prediction Method
    Wei, Wangyang
    Wu, Honghai
    Ma, Huadong
    SENSORS, 2019, 19 (13)
  • [24] LSTM-based Deep Learning Model for Stock Prediction and Predictive Optimization Model
    Rather, Akhter Mohiuddin
    EURO JOURNAL ON DECISION PROCESSES, 2021, 9
  • [25] An optimized LSTM-based deep learning model for anomaly network intrusion detection
    Dash, Nitu
    Chakravarty, Sujata
    Rath, Amiya Kumar
    Giri, Nimay Chandra
    Aboras, Kareem M.
    Gowtham, N.
    SCIENTIFIC REPORTS, 2025, 15 (01):
  • [26] LSTM-Based Deep Learning Methods for Prediction of Earthquakes Using Ionospheric Data
    Abri, Rayan
    Artuner, Harun
    GAZI UNIVERSITY JOURNAL OF SCIENCE, 2022, 35 (04): : 1417 - 1431
  • [27] A hybrid CNN and LSTM-based deep learning model for abnormal behavior detection
    Chang, Chuan-Wang
    Chang, Chuan-Yu
    Lin, You-Ying
    MULTIMEDIA TOOLS AND APPLICATIONS, 2022, 81 (09) : 11825 - 11843
  • [28] Deep Learning Approach to Detect Malicious Attacks at System Level
    Soni, Jayesh
    Prabakar, Nagarajan
    Upadhyay, Himanshu
    PROCEEDINGS OF THE 2019 CONFERENCE ON SECURITY AND PRIVACY IN WIRELESS AND MOBILE NETWORKS (WISEC '19), 2019, : 314 - 315
  • [29] OneHotEncoding and LSTM-based deep learning models for protein secondary structure prediction
    Enireddy, Vamsidhar
    Karthikeyan, C.
    Babu, D. Vijendra
    SOFT COMPUTING, 2022, 26 (08) : 3825 - 3836
  • [30] A hybrid CNN and LSTM-based deep learning model for abnormal behavior detection
    Chuan-Wang Chang
    Chuan-Yu Chang
    You-Ying Lin
    Multimedia Tools and Applications, 2022, 81 : 11825 - 11843