Measuring and Suppressing Quantum State Leakage in a Superconducting Qubit

被引:161
|
作者
Chen, Zijun [1 ]
Kelly, Julian [2 ]
Quintana, Chris [1 ]
Barends, R. [2 ]
Campbell, B. [1 ]
Chen, Yu [2 ]
Chiaro, B. [1 ]
Dunsworth, A. [1 ]
Fowler, A. G. [2 ]
Lucero, E. [2 ]
Jeffrey, E. [2 ]
Megrant, A. [1 ,3 ]
Mutus, J. [2 ]
Neeley, M. [2 ]
Neill, C. [1 ]
O'Malley, P. J. J. [1 ]
Roushan, P. [2 ]
Sank, D. [2 ]
Vainsencher, A. [1 ]
Wenner, J. [1 ]
White, T. C. [1 ]
Korotkov, A. N. [4 ]
Martinis, John M. [1 ,2 ]
机构
[1] Univ Calif Santa Barbara, Dept Phys, Santa Barbara, CA 93106 USA
[2] Google Inc, Santa Barbara, CA 93117 USA
[3] Univ Calif Santa Barbara, Dept Mat, Santa Barbara, CA 93106 USA
[4] Univ Calif Riverside, Dept Elect & Comp Engn, Riverside, CA 92521 USA
基金
美国国家科学基金会;
关键词
D O I
10.1103/PhysRevLett.116.020501
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Leakage errors occur when a quantum system leaves the two-level qubit subspace. Reducing these errors is critically important for quantum error correction to be viable. To quantify leakage errors, we use randomized benchmarking in conjunction with measurement of the leakage population. We characterize single qubit gates in a superconducting qubit, and by refining our use of derivative reduction by adiabatic gate pulse shaping along with detuning of the pulses, we obtain gate errors consistently below 10(-3) and leakage rates at the 10(-5) level. With the control optimized, we find that a significant portion of the remaining leakage is due to incoherent heating of the qubit.
引用
收藏
页数:5
相关论文
共 50 条
  • [41] Quantum Interface between a Superconducting Qubit and Spin Ensembles
    Zhang, Feng-Yang
    Li, Wen-Lin
    Yan, Wei-Bin
    Yang, Chui-Ping
    ANNALEN DER PHYSIK, 2019, 531 (08)
  • [42] Integrated photonic qubit quantum computing on a superconducting chip
    Du, Lianghui
    Hu, Yong
    Zhou, Zheng-Wei
    Guo, Guang-Can
    Zhou, Xingxiang
    NEW JOURNAL OF PHYSICS, 2010, 12
  • [43] Hartree-Fock on a superconducting qubit quantum computer
    AI Quantum G.
    SCIENCE, 2020, 369 (6507) : 1084 - +
  • [44] Entanglement in a 20-Qubit Superconducting Quantum Computer
    Mooney, Gary J.
    Hill, Charles D.
    Hollenberg, Lloyd C. L.
    SCIENTIFIC REPORTS, 2019, 9 (1)
  • [45] Quantum phases in circuit QED with a superconducting qubit array
    Yuanwei Zhang
    Lixian Yu
    J. -Q Liang
    Gang Chen
    Suotang Jia
    Franco Nori
    Scientific Reports, 4
  • [46] Measuring the Berry phase in a superconducting phase qubit by a shortcut to adiabaticity
    Zhang, Zhenxing
    Wang, Tenghui
    Xiang, Liang
    Yao, Jiadong
    Wu, Jianlan
    Yin, Yi
    PHYSICAL REVIEW A, 2017, 95 (04)
  • [47] Demonstration of Quantum Zeno Effect in a Superconducting Phase Qubit
    Zhang, Z. -T.
    Xue, Z. -Y.
    JETP LETTERS, 2011, 93 (06) : 349 - 353
  • [48] Simply quantum information processing with RF superconducting qubit
    F. -Y. Zhang
    Z. -H. Chen
    C. Li
    H. -S. Song
    JETP Letters, 2013, 96 : 785 - 788
  • [49] Demonstration of quantum zeno effect in a superconducting phase qubit
    Z. -T. Zhang
    Z. -Y. Xue
    JETP Letters, 2011, 93 : 349 - 353
  • [50] Quantum phases in circuit QED with a superconducting qubit array
    Zhang, Yuanwei
    Yu, Lixian
    Liang, J. -Q.
    Chen, Gang
    Jia, Suotang
    Nori, Franco
    SCIENTIFIC REPORTS, 2014, 4