Measuring and Suppressing Quantum State Leakage in a Superconducting Qubit

被引:161
|
作者
Chen, Zijun [1 ]
Kelly, Julian [2 ]
Quintana, Chris [1 ]
Barends, R. [2 ]
Campbell, B. [1 ]
Chen, Yu [2 ]
Chiaro, B. [1 ]
Dunsworth, A. [1 ]
Fowler, A. G. [2 ]
Lucero, E. [2 ]
Jeffrey, E. [2 ]
Megrant, A. [1 ,3 ]
Mutus, J. [2 ]
Neeley, M. [2 ]
Neill, C. [1 ]
O'Malley, P. J. J. [1 ]
Roushan, P. [2 ]
Sank, D. [2 ]
Vainsencher, A. [1 ]
Wenner, J. [1 ]
White, T. C. [1 ]
Korotkov, A. N. [4 ]
Martinis, John M. [1 ,2 ]
机构
[1] Univ Calif Santa Barbara, Dept Phys, Santa Barbara, CA 93106 USA
[2] Google Inc, Santa Barbara, CA 93117 USA
[3] Univ Calif Santa Barbara, Dept Mat, Santa Barbara, CA 93106 USA
[4] Univ Calif Riverside, Dept Elect & Comp Engn, Riverside, CA 92521 USA
基金
美国国家科学基金会;
关键词
D O I
10.1103/PhysRevLett.116.020501
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Leakage errors occur when a quantum system leaves the two-level qubit subspace. Reducing these errors is critically important for quantum error correction to be viable. To quantify leakage errors, we use randomized benchmarking in conjunction with measurement of the leakage population. We characterize single qubit gates in a superconducting qubit, and by refining our use of derivative reduction by adiabatic gate pulse shaping along with detuning of the pulses, we obtain gate errors consistently below 10(-3) and leakage rates at the 10(-5) level. With the control optimized, we find that a significant portion of the remaining leakage is due to incoherent heating of the qubit.
引用
收藏
页数:5
相关论文
共 50 条
  • [1] State leakage during fast decay and control of a superconducting transmon qubit
    Babu, Aravind Plathanam
    Tuorila, Jani
    Ala-Nissila, Tapio
    NPJ QUANTUM INFORMATION, 2021, 7 (01)
  • [2] State leakage during fast decay and control of a superconducting transmon qubit
    Aravind Plathanam Babu
    Jani Tuorila
    Tapio Ala-Nissila
    npj Quantum Information, 7
  • [3] Reversal of the Weak Measurement of a Quantum State in a Superconducting Phase Qubit
    Katz, Nadav
    Neeley, Matthew
    Ansmann, M.
    Bialczak, Radoslaw C.
    Hofheinz, M.
    Lucero, Erik
    O'Connell, A.
    Wang, H.
    Cleland, A. N.
    Martinis, John M.
    Korotkov, Alexander N.
    PHYSICAL REVIEW LETTERS, 2008, 101 (20)
  • [4] Quantum State Transmission in a Superconducting Charge Qubit-Atom Hybrid
    Deshui Yu
    María Martínez Valado
    Christoph Hufnagel
    Leong Chuan Kwek
    Luigi Amico
    Rainer Dumke
    Scientific Reports, 6
  • [5] Quantum State Transmission in a Superconducting Charge Qubit-Atom Hybrid
    Yu, Deshui
    Valado, Maria Martinez
    Hufnagel, Christoph
    Kwek, Leong Chuan
    Amico, Luigi
    Dumke, Rainer
    SCIENTIFIC REPORTS, 2016, 6
  • [6] Fast reset and suppressing spontaneous emission of a superconducting qubit
    Reed, M. D.
    Johnson, B. R.
    Houck, A. A.
    DiCarlo, L.
    Chow, J. M.
    Schuster, D. I.
    Frunzio, L.
    Schoelkopf, R. J.
    APPLIED PHYSICS LETTERS, 2010, 96 (20)
  • [7] Rolling quantum dice with a superconducting qubit
    Barends, R.
    Kelly, J.
    Veitia, A.
    Megrant, A.
    Fowler, A. G.
    Campbell, B.
    Chen, Y.
    Chen, Z.
    Chiaro, B.
    Dunsworth, A.
    Hoi, I. -C.
    Jeffrey, E.
    Neill, C.
    O'Malley, P. J. J.
    Mutus, J.
    Quintana, C.
    Roushan, P.
    Sank, D.
    Wenner, J.
    White, T. C.
    Korotkov, A. N.
    Cleland, A. N.
    Martinis, John M.
    PHYSICAL REVIEW A, 2014, 90 (03):
  • [8] Perspective on superconducting qubit quantum computing
    Ezratty, Olivier
    EUROPEAN PHYSICAL JOURNAL A, 2023, 59 (05):
  • [9] Quantum Microwave Radiometry with a Superconducting Qubit
    Wang, Zhixin
    Xu, Mingrui
    Han, Xu
    Fu, Wei
    Puri, Shruti
    Girvin, S. M.
    Tang, Hong X.
    Shankar, S.
    Devoret, M. H.
    PHYSICAL REVIEW LETTERS, 2021, 126 (18)
  • [10] Perspective on superconducting qubit quantum computing
    Olivier Ezratty
    The European Physical Journal A, 59