Critical weak-Lp differentiability of singular integrals

被引:1
|
作者
Ambrosio, Luigi [1 ]
Ponce, Augusto C. [2 ]
Rodiac, Remy [2 ,3 ]
机构
[1] Scuola Normale Super Pisa, Piazza Cavalieri 7, I-56126 Pisa, Italy
[2] Catholic Univ Louvain, Inst Rech Math & Phys, Chemin Cyclotron 2, B-1348 Louvain La Neuve, Belgium
[3] Univ Paris Saclay, CNRS, Lab Math Orsay, F-91405 Orsay, France
关键词
Approximate differentiability; convolution products; singular integrals; Calderon-Zygmund decomposition; level sets; Laplacian; finite measures; LIMITING VORTICITIES; VISCOSITY SOLUTIONS; POTENTIALS; REGULARITY; EQUATIONS; THEOREM;
D O I
10.4171/RMI/1190
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We establish that for every function u is an element of L-loc(1)(Omega) whose distributional Laplacian Delta u is a signed Borel measure in an open set Omega in R-N, the distributional gradient del u is differentiable almost everywhere in Omega with respect to the weak-LN/(N-1) Marcinkiewicz norm. We show in addition that the absolutely continuous part of Delta u with respect to the Lebesgue measure equals zero almost everywhere on the level sets {u = alpha} and {del u = e}, for every alpha is an element of R and e is an element of R-N. Our proofs rely on an adaptation of Calderon and Zygmund's singular-integral estimates inspired by subsequent work by Hajlasz.
引用
收藏
页码:2033 / 2072
页数:40
相关论文
共 50 条
  • [31] A weak-Lp Prodi-Serrin type regularity criterion for the micropolar fluid equations in terms of the pressure
    Ben Omrane, Ines
    Ben Slimane, Mourad
    Gala, Sadek
    Ragusa, Maria Alessandra
    RICERCHE DI MATEMATICA, 2024, 73 (04) : 2145 - 2157
  • [32] Singular integrals and fractional integrals in Triebel-Lizorkin spaces and in weighted LP spaces
    Fan, Dashan
    Le, Hung Viet
    MATHEMATICAL INEQUALITIES & APPLICATIONS, 2008, 11 (01): : 127 - 147
  • [33] Lp ESTIMATES FOR THE VARIATION FOR SINGULAR INTEGRALS ON UNIFORMLY RECTIFIABLE SETS
    Mas, Albert
    Tolsa, Xavier
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2017, 369 (11) : 8239 - 8275
  • [34] Weighted Lp estimates for maximal commutators of multilinear singular integrals
    Dongxiang Chen
    Jiecheng Chen
    Suzhen Mao
    Chinese Annals of Mathematics, Series B, 2013, 34 : 885 - 902
  • [35] Uniform (Lp, Lq) boundedness of multilinear oscillatory singular integrals
    Lu, SZ
    Wu, Q
    Yang, DC
    PROGRESS IN NATURAL SCIENCE, 2000, 10 (10) : 744 - 753
  • [36] Multilinear singular integrals on non-commutative Lp spaces
    Di Plinio, Francesco
    Li, Kangwei
    Martikainen, Henri
    Vuorinen, Emil
    MATHEMATISCHE ANNALEN, 2020, 378 (3-4) : 1371 - 1414
  • [37] Lp Bounds for Singular Integrals with Rough Kernels on Product Domains
    Li MA
    Da Shan FAN
    Huo Xiong WU
    Acta Mathematica Sinica,English Series, 2012, 28 (01) : 133 - 144
  • [38] Weighted Lp Estimates for Maximal Commutators of Multilinear Singular Integrals
    Dongxiang CHEN
    Jiecheng CHEN
    Suzhen MAO
    Chinese Annals of Mathematics(Series B), 2013, 34 (06) : 885 - 902
  • [39] Lp Bounds for the Commutators of Oscillatory Singular Integrals with Rough Kernels
    Chen, Yanping
    Zhu, Kai
    ABSTRACT AND APPLIED ANALYSIS, 2014,
  • [40] Lp bounds for singular integrals with rough kernels on product domains
    Li Ma
    Da Shan Fan
    Huo Xiong Wu
    Acta Mathematica Sinica, English Series, 2012, 28 : 133 - 144