An Analysis of Project Risks Using the Non-parametric Bootstrap Technique

被引:8
|
作者
Alborzi, S. [1 ]
Aminian, A. [2 ]
Mojtahedi, S. M. H. [3 ]
Mousavi, S. M. [3 ]
机构
[1] Islamic Azad Univ Qazvin, Dept Mech & Ind Engn, Qazvin, Iran
[2] Islamic Azad Univ, Dept Ind Engn, Gachsaran Branch, Damavand, Iran
[3] Islamic Azad Univ, Grad Sch, Dept Ind Engn, S Tehran Branch Member Young Res Club, Tehran, Iran
关键词
Bootstrap; non-parametric standard deviation; project risk analysis; risk factor;
D O I
10.1109/IEEM.2008.4738079
中图分类号
F [经济];
学科分类号
02 ;
摘要
Standard statistical techniques do not always provide answers to project risks questions because often there are no parametric distributions on which significance can be estimated. Resampling methods provide a battery of tests that can be used in such circumstances. In the past few years these methods have been explored theoretically and are now employed frequently. The aim of the paper is to highlight the motivations for using a model base on bootstrap in typical project risk analysis. Bootstrap method for decreasing the standard deviation of project risks is described. We give a numerical example for better understanding.
引用
收藏
页码:1295 / +
页数:2
相关论文
共 50 条
  • [31] To be parametric or non-parametric, that is the question Parametric and non-parametric statistical tests
    Van Buren, Eric
    Herring, Amy H.
    BJOG-AN INTERNATIONAL JOURNAL OF OBSTETRICS AND GYNAECOLOGY, 2020, 127 (05) : 549 - 550
  • [32] Smooth Residual Bootstrap for Empirical Processes of Non-parametric Regression Residuals
    Neumeyer, Natalie
    SCANDINAVIAN JOURNAL OF STATISTICS, 2009, 36 (02) : 204 - 228
  • [33] A Non-parametric Bootstrap Method for Kinetic Monte Carlo Variance Reduction
    Skretteberg, Martin
    Cosgrove, Paul
    Kowalski, Mikolaj
    JOINT INTERNATIONAL CONFERENCE ON SUPERCOMPUTING IN NUCLEAR APPLICATIONS + MONTE CARLO, SNA + MC 2024, 2024, 302
  • [34] NON-PARAMETRIC METHODS FOR COST-EFFECTIVENESS ANALYSIS: THE CENTRAL LIMIT THEOREM AND THE BOOTSTRAP COMPARED
    Nixon, Richard M.
    Wonderling, David
    Grieve, Richard D.
    HEALTH ECONOMICS, 2010, 19 (03) : 316 - 333
  • [35] A Computationally Efficient, Consistent Bootstrap for Inference with Non-parametric DEA Estimators
    Kneip, Alois
    Simar, Leopold
    Wilson, Paul W.
    COMPUTATIONAL ECONOMICS, 2011, 38 (04) : 483 - 515
  • [36] A Computationally Efficient, Consistent Bootstrap for Inference with Non-parametric DEA Estimators
    Alois Kneip
    Léopold Simar
    Paul W. Wilson
    Computational Economics, 2011, 38 : 483 - 515
  • [37] Non-parametric and region-based image fusion with Bootstrap sampling
    Zribi, Mourad
    INFORMATION FUSION, 2010, 11 (02) : 85 - 94
  • [38] Measuring directed functional connectivity using non-parametric directionality analysis: Validation and comparison with non-parametric Granger Causality
    West, Timothy O.
    Halliday, David M.
    Bressler, Steven L.
    Farmer, Simon F.
    Litvak, Vladimir
    NEUROIMAGE, 2020, 218
  • [39] Parametric and non-parametric bootstrap confidence intervals of C-Npk for exponential power distribution
    Saha, Mahendra
    Dey, Sanku
    Maiti, Sudhansu S.
    JOURNAL OF INDUSTRIAL AND PRODUCTION ENGINEERING, 2018, 35 (03) : 160 - 169
  • [40] Gene set enrichment analysis using non-parametric scores
    Baya, Ariel E.
    Larese, Monica G.
    Granitto, Pablo M.
    Gomez, Juan Carlos
    Tapia, Elizabeth
    ADVANCES IN BIOINFORMATICS AND COMPUTATIONAL BIOLOGY, PROCEEDINGS, 2007, 4643 : 12 - +