The stability of Co3O4, Fe2O3, Au/Co3O4 and Au/Fe2O3 catalysts in the catalytic combustion of lean methane mixtures in the presence of water

被引:45
|
作者
Setiawan, Adi [1 ,2 ]
Kennedy, Eric M. [1 ]
Dlugogorski, Bogdan Z. [3 ]
Adesina, Adesoji A. [4 ]
Stockenhuber, Michael [1 ]
机构
[1] Univ Newcastle, Sch Engn, Prior Res Ctr Energy PRCfE, Discipline Chem Engn, Callaghan, NSW 2308, Australia
[2] Univ Malikussaleh, Jurusan Tekn Mesin, Fak Tekn, Reuleut 24355, Aceh Utara, Indonesia
[3] Murdoch Univ, Sch Engn & Informat Technol, Murdoch, WA 6150, Australia
[4] ATODATECH LLC, Brentwood, CA 94513 USA
关键词
Catalytic combustion; Methane; Cobalt oxide; Iron oxide; Gold; Water inhibition; CARBON-MONOXIDE; GOLD CATALYSTS; TOTAL OXIDATION; LOW-TEMPERATURE; CH4; OXIDATION; CO; ALKANES; OXIDES;
D O I
10.1016/j.cattod.2014.11.031
中图分类号
O69 [应用化学];
学科分类号
081704 ;
摘要
Nano-sized Co3O4, Fe2O3, Au/Co3O4 and Au/Fe2O3 catalysts were prepared and evaluated for catalytic combustion of lean methane-air mixtures. Characteristics and catalytic activities under dry and wet feed conditions were investigated at gas hourly space velocities up to 100000 h(-1) mimicking the typical flow and conversion requirements of a catalytic system designed to treat a ventilation air methane stream. In order to gain a better understanding of the interaction between H2O and the catalyst surface, temperature-programmed desorption of water over fresh and used samples were studied, and supported by other catalyst characterization techniques such as N-2-adsorption desorption, XRD, TEM, SEM and XPS analyses. The activity measurements of the catalysts studied identify Co3O4 as the most active material. Co-precipitating gold particles with cobalt oxide or iron oxide do not enhance the activity of the catalyst, which is most likely due to blocking the active site of support by the gold particle. The presence of strong hydroxyl bonds on the catalyst surface is substantiated by TPD and XPS analyses, and is suggested to be responsible for the rapid deactivation of Fe2O3 and Au/Fe2O3 catalysts. (C) 2014 Elsevier B.V. All rights reserved.
引用
收藏
页码:276 / 283
页数:8
相关论文
共 50 条
  • [21] Facile and Scalable Fabrication of Highly Porous Co3O4 and α-Fe2O3 Nanosheets and Their Catalytic Properties
    Le Lam Son
    Tran Thi Van Thi
    Khuc Quang Trung
    Nguyen Van Hieu
    Do Dang Trung
    Nguyen Duc Cuong
    Journal of Electronic Materials, 2019, 48 : 7897 - 7905
  • [22] Facile and Scalable Fabrication of Highly Porous Co3O4 and α-Fe2O3 Nanosheets and Their Catalytic Properties
    Son, Le Lam
    Van Thi, Tran Thi
    Trung, Khuc Quang
    Van Hieu, Nguyen
    Trung, Do Dang
    Cuong, Nguyen Duc
    JOURNAL OF ELECTRONIC MATERIALS, 2019, 48 (12) : 7897 - 7905
  • [23] Investigation of catalytic activity of Au/Co3O4(001) and Au/Co3O4(111) in the CO oxidation reaction
    Barkaoui, Sami
    Li, Zhiwen
    Cao, Changhai
    Gu, Xinrui
    Zeng, Qiong
    Lumbers, Brock
    Li, Gao
    NEW JOURNAL OF CHEMISTRY, 2024, 48 (02) : 631 - 639
  • [24] Highly sensitive Au–Fe2O3–Au and Fe2O3–Au–Fe2O3 biosensors utilizing strong surface plasmon resonance
    Ashour M. Ahmed
    Mohamed Shaban
    Applied Physics B, 2020, 126
  • [25] Interface engineering of Co3O4 loaded CaFe2O4/Fe2O3 heterojunction for photoelectrochemical water oxidation
    Cai, Jiajia
    Li, Song
    Qin, Gaowu
    APPLIED SURFACE SCIENCE, 2019, 466 : 92 - 98
  • [26] Microcalorimetry, adsorption, and reaction studies of CO, O2, and CO+O2 over Au/Fe2O3, Fe2O3, and polycrystalline gold catalysts
    Tripathi, AK
    Kamble, VS
    Gupta, NM
    JOURNAL OF CATALYSIS, 1999, 187 (02) : 332 - 342
  • [27] Catalytic decomposition of methanol on Au/Fe2O3 catalysts
    Mitov, Ivan
    Klissurski, Dimitar
    Minchev, Christo
    COMPTES RENDUS DE L ACADEMIE BULGARE DES SCIENCES, 2008, 61 (08): : 1003 - 1006
  • [28] Synthesis of Co3O4/Fe2O3 double-shelled nanocages with enhanced pseudocapacitance
    Ju, Hui
    Pu, Chenjin
    Yang, Jixiang
    Deng, Xinyi
    Wang, Sheng
    Xie, Xiaohong
    Yi, Weiyi
    Liu, Shuxin
    Li, Quanlong
    CRYSTENGCOMM, 2025, 27 (09) : 1325 - 1332
  • [29] Morphology effects of Co3O4 on the catalytic activity of Au/Co3O4 catalysts for complete oxidation of trace ethylene
    Xue, Wen Juan
    Wang, Yu Fei
    Li, Peng
    Liu, Zhao-Tie
    Hao, Zheng Ping
    Ma, Chun Yan
    CATALYSIS COMMUNICATIONS, 2011, 12 (13) : 1265 - 1268
  • [30] Au-Pt/Co3O4 catalyst for methane combustion
    Miao, SJ
    Deng, YQ
    APPLIED CATALYSIS B-ENVIRONMENTAL, 2001, 31 (03) : L1 - L4