Indexing Bipartite Memberships in Web Graphs

被引:0
|
作者
Xie, Yusheng [1 ]
Chen, Zhengzhang [2 ]
Palsetia, Diana [1 ]
Agrawal, Ankit [1 ]
Choudhary, Alok [1 ]
机构
[1] Northwestern Univ, Evanston, IL 60208 USA
[2] NEC Labs Amer, Princeton, NJ USA
来源
2014 PROCEEDINGS OF THE IEEE/ACM INTERNATIONAL CONFERENCE ON ADVANCES IN SOCIAL NETWORKS ANALYSIS AND MINING (ASONAM 2014) | 2014年
关键词
DISCOVERY;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Massive bipartite graphs are ubiquitous in real world and have important applications in social networks, biological mechanisms, etc. Consider one billion plus people on Facebook making trillions of connections with millions of organizations. Such big social bipartite graphs are often very skewed and unbalanced, on which traditional indexing algorithms do not perform optimally. In this paper, we propose Arowana, a data-driven algorithm for indexing large unbalanced bipartite graphs. Arowana achieves a high-performance efficiency by building an index tree that incorporates the semantic affinity among unbalanced graphs. Arowana uses probabilistic data structures to minimize space overhead and optimize search. In the experiments, we show that Arowana exhibits significant performance improvements and reduces space overhead over traditional indexing techniques.
引用
收藏
页码:166 / 173
页数:8
相关论文
共 50 条
  • [31] On bipartite graphs with complete bipartite star complements
    Rowlinson, Peter
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2014, 458 : 149 - 160
  • [32] Unbalanced bipartite factorizations of complete bipartite graphs
    Martin, Nigel
    DISCRETE MATHEMATICS, 2006, 306 (17) : 2084 - 2090
  • [33] Complete bipartite factorisations by complete bipartite graphs
    Martin, N
    DISCRETE MATHEMATICS, 1997, 167 : 461 - 480
  • [34] ON HAMILTONIAN BIPARTITE GRAPHS
    MOON, J
    MOSER, L
    ISRAEL JOURNAL OF MATHEMATICS, 1963, 1 (03) : 163 - &
  • [35] Koszul bipartite graphs
    Ohsugi, H
    Hibi, T
    ADVANCES IN APPLIED MATHEMATICS, 1999, 22 (01) : 25 - 28
  • [36] Nearly bipartite graphs
    Gyori, E
    Nikiforov, V
    Schelp, RH
    DISCRETE MATHEMATICS, 2003, 272 (2-3) : 187 - 196
  • [37] Generalization of bipartite graphs
    Reddy, P. Siva Kota
    Hemavathi, P. S.
    JOURNAL OF DISCRETE MATHEMATICAL SCIENCES & CRYPTOGRAPHY, 2020, 23 (03): : 787 - 793
  • [38] Bipartite covering graphs
    Archdeacon, D
    Kwak, JH
    Lee, J
    Sohn, MY
    DISCRETE MATHEMATICS, 2000, 214 (1-3) : 51 - 63
  • [39] On the deficiency of bipartite graphs
    Giaro, K
    Kubale, M
    Malafiejski, M
    DISCRETE APPLIED MATHEMATICS, 1999, 94 (1-3) : 193 - 203
  • [40] Bipartite Steinhaus graphs
    Lee, YS
    Chang, GJ
    TAIWANESE JOURNAL OF MATHEMATICS, 1999, 3 (03): : 303 - 310