Fibre-reinforced multifunctional SiC matrix composite materials

被引:276
|
作者
Yin, X. W. [1 ]
Cheng, L. F. [1 ]
Zhang, L. T. [1 ]
Travitzky, N. [2 ]
Greil, P. [2 ]
机构
[1] Northwestern Polytech Univ, Sci & Technol Thermostruct Composite Mat Lab, Xian 710072, Peoples R China
[2] Univ Erlangen Nuernberg, Inst Glass & Ceram, Dept Mat Sci, Martensstr 5, D-91058 Erlangen, Germany
关键词
Ceramic-matrix composites; Mechanical properties; Oxidation resistance; Wear resistance; Electromagnetic interference shielding property; Electromagnetic absorption property; Dielectric property; INTERFERENCE SHIELDING EFFECTIVENESS; TEMPERATURE OXIDATION BEHAVIOR; MICROWAVE ABSORBING PROPERTIES; REACTIVE MELT INFILTRATION; POLYMER-DERIVED CERAMICS; SLIDING-WEAR RESISTANCE; SIO2 SCALE VOLATILITY; C COATED CARBON; DIELECTRIC-PROPERTIES; SILICON-CARBIDE;
D O I
10.1080/09506608.2016.1213939
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In the last two decades, fibre-reinforced SiC ceramic-matrix composites (CMCs) have attracted extensive interests. Owing to the designable multi-scale microstructure feature and the tailorable processing methods such as chemical vapour infiltration and polymer derived ceramics, SiC matrix composites attain great potential as multifunctional composites. Through designing the fibre, interphase, matrix and coating, the composite exhibits a multitude of functionalities which are desirable for various technological applications. Besides strengthening and toughening design of CMCs, three inspiring issues of multifunctional CMCs are receiving increasing attention, including crack self-healing, friction self-lubrication, and electromagnetic shielding and absorption, which are the key mechanisms to promote the application of CMCs in hot structures of engines and aerospace vehicles, braking pads/discs, various electronic devices, etc. The present review covers the main mechanisms on strengthening and toughening, crack self-healing, friction self-lubrication, and electromagnetic shielding and absorption of CMCs. Key developments and future challenges in this field are summarised.
引用
收藏
页码:117 / 172
页数:56
相关论文
共 50 条
  • [41] Scratching brazing of SiC fibre reinforced aluminum matrix composite
    Zhang, LX
    Feng, JC
    Li, ZR
    Liu, HJ
    Sun, HY
    TRANSACTIONS OF NONFERROUS METALS SOCIETY OF CHINA, 2003, 13 : 42 - 44
  • [42] Fibre-reinforced plastics with elastomeric matrix
    Kunsts Plast Eur, 9 (55-57):
  • [43] Wave propagation in thermally conducting linear fibre-reinforced composite materials
    Singh, B
    ARCHIVE OF APPLIED MECHANICS, 2006, 75 (8-9) : 513 - 520
  • [44] Hybrid Fibre-Reinforced Cement Composite
    Silva, E. R.
    Ferreira, H. E.
    Coelho, J. F. J.
    Bordado, J. C.
    ADVANCED MATERIALS FORUM VI, PTS 1 AND 2, 2013, 730-732 : 343 - +
  • [45] Fibre-reinforced Composite in Clinical Dentistry
    Garoushi, Sufyan K.
    Lassila, Lippo V. J.
    Vallittu, Pekka K.
    CHINESE JOURNAL OF DENTAL RESEARCH, 2009, 12 (01): : 7 - 14
  • [46] Progress in the development of industrial scale tungsten fibre-reinforced composite materials
    Riesch, J.
    von Mueller, A.
    Mao, Y.
    Coenen, J. W.
    Boeswirth, B.
    Elgeti, S.
    Fuhr, M.
    Greuner, H.
    Hoeschen, T.
    Hunger, K.
    Junghanns, P.
    Lau, A.
    Roccella, S.
    Vanlitsenburgh, L.
    You, J. -h.
    Linsmeier, Ch.
    Neu, R.
    NUCLEAR MATERIALS AND ENERGY, 2024, 38
  • [47] Experimental and Numerical Investigations in Mechanical Machining of Fibre-Reinforced Composite Materials
    Xu, Jinyang
    Davim, J. Paulo
    El Mansori, Mohamed
    Krishnaraj, Vijayan
    ADVANCES IN MATERIALS SCIENCE AND ENGINEERING, 2021, 2021
  • [48] Photo-elastic analysis of fibre-reinforced model composite materials
    Fiedler, B
    Schulte, K
    COMPOSITES SCIENCE AND TECHNOLOGY, 1997, 57 (08) : 859 - 867
  • [49] STATIC TENSION TEST OF CONTINUOUS FIBRE-REINFORCED COMPOSITE MATERIALS.
    Ryska, Jaromir
    Johannesson, Thomas
    Stavebnicky casopis, 1982, 30 (07): : 521 - 538
  • [50] Wave propagation in thermally conducting linear fibre-reinforced composite materials
    Baljeet Singh
    Archive of Applied Mechanics, 2006, 75 : 513 - 520