Models of thermodiffusion in 1D

被引:4
|
作者
Liu, Yan [1 ]
Reissig, Michael [2 ]
机构
[1] Guangdong Univ Finance, Dept Appl Math, Guangzhou 510521, Guangdong, Peoples R China
[2] Tech Univ Bergakad Freiberg, Fac Math & Comp Sci, D-09596 Freiberg, Germany
基金
中国国家自然科学基金;
关键词
diffusion phenomenon; propagation of singularities; thermodiffusion in 1D; Lp - Lq decay estimates; hyperbolic-parabolic coupled system; WKB analysis; ANISOTROPIC THERMO-ELASTICITY; LINEAR THERMOELASTIC SYSTEMS; DYNAMICAL PROBLEM; PART I; EXISTENCE; 2D;
D O I
10.1002/mma.2839
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The goal of the paper is to study the Cauchy problem for 1D models of thermodiffusion. We explain qualitative properties of solutions. In particular, we show which part of the model has a dominant influence on well-posedness, propagation of singularities, L-p - L-q decay estimates on the conjugate line, and on the diffusion phenomenon. Copyright (c) 2013 John Wiley & Sons, Ltd.
引用
收藏
页码:817 / 837
页数:21
相关论文
共 50 条
  • [31] System of Recursive Equations for the Partition Functions of 1D Models
    Rozikov, U. A.
    LOBACHEVSKII JOURNAL OF MATHEMATICS, 2011, 32 (02) : 109 - 113
  • [32] 1D Ising models, compound geometric distributions and selfdecomposability
    Jurek, ZJ
    REPORTS ON MATHEMATICAL PHYSICS, 2001, 47 (01) : 21 - 30
  • [33] Inherent nonuniqueness in magnetotelluric inversion for 1D anisotropic models
    Yin, CC
    GEOPHYSICS, 2003, 68 (01) : 138 - 146
  • [34] Comparison of 1D models of water flow in unsaturated soils
    Gandolfi, C.
    Facchi, A.
    Maggi, D.
    ENVIRONMENTAL MODELLING & SOFTWARE, 2006, 21 (12) : 1759 - 1764
  • [35] Quantum dynamics in 1D lattice models with synthetic horizons
    Morice, Corentin
    Chernyavsky, Dmitry
    van Wezel, Jasper
    van den Brink, Jeroen
    Moghaddam, Ali G.
    SCIPOST PHYSICS CORE, 2022, 5 (03):
  • [36] Coupling of Acoustic and Intrinsic Modes in 1D Combustor Models
    Mukherjee, Nalini Kanta
    Shrira, Victor
    COMBUSTION SCIENCE AND TECHNOLOGY, 2021, 193 (06) : 889 - 910
  • [37] Coupling of 1D and 2D models for river flow modelling
    Finaud-Guyot, Pascal
    Delenne, Carole
    Guinot, Vincent
    HOUILLE BLANCHE-REVUE INTERNATIONALE DE L EAU, 2011, (03): : 23 - 28
  • [38] Aging in 1D discrete spin models and equivalent systems
    Fontes, LR
    Isopi, M
    Newman, CM
    Stein, DL
    PHYSICAL REVIEW LETTERS, 2001, 87 (11)
  • [39] 2D versus 1D models for Shallow Water Equations
    Vila, Jean Paul
    Chazel, Florent
    Noble, Pascal
    24TH INTERNATIONAL CONGRESS OF THEORETICAL AND APPLIED MECHANICS - FOUNDATION OF MULTIDISCIPLINARY RESEARCH, 2017, 20 : 167 - 174
  • [40] Integrating 1D and 2D hydrodynamic models for flood simulation
    Lin, B
    Wicks, JM
    Falconer, RA
    Adams, K
    PROCEEDINGS OF THE INSTITUTION OF CIVIL ENGINEERS-WATER MANAGEMENT, 2006, 159 (01) : 19 - 25