The generalized discrete fractional fourier transforms

被引:0
|
作者
Oraintara, S [1 ]
机构
[1] Univ Texas, EE Dept, Arlington, TX 76019 USA
关键词
D O I
暂无
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
hi this paper, we develop the generalized discrete fractional Fourier transform (GDFRFT) by factorizing the generalized discrete Fourier transform (GDFT) matrix. Specifically, the eigenvalues and eigen-vectors are presented and then used to define the GDFRFT. It is shown that the GDFRFT may be obtained by simple similarity transformations of the conventional DFRFT if the time and frequency shifting indexes are integers. Fast and efficient structures are presented and integer structures are also discussed.
引用
收藏
页码:1185 / 1188
页数:4
相关论文
共 50 条
  • [41] Discrete HARWHT and Discrete Fractional HARWHT Transforms
    Zhu, Hongqing
    ARTIFICIAL INTELLIGENCE AND COMPUTATIONAL INTELLIGENCE, PT II, 2011, 7003 : 530 - 537
  • [42] SELF FOURIER FUNCTIONS AND FRACTIONAL FOURIER-TRANSFORMS
    MENDLOVIC, D
    OZAKTAS, HM
    LOHMANN, AW
    OPTICS COMMUNICATIONS, 1994, 105 (1-2) : 36 - 38
  • [43] Multiplicity of fractional Fourier transforms and their relationships
    Cariolaro, G
    Erseghe, T
    Kraniauskas, P
    Laurenti, N
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2000, 48 (01) : 227 - 241
  • [44] FRACTIONAL FOURIER-TRANSFORMS AND IMAGING
    BERNARDO, LM
    SOARES, ODD
    JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND VISION, 1994, 11 (10): : 2622 - 2626
  • [45] Optimal Overcomplete Kernel Design for Sparse Representations via Discrete Fractional Fourier Transforms
    Yang, Zhijing
    Qing, Chunmei
    Ling, Bingo Wing-Kuen
    Woo, Wai Lok
    Sanei, Saeid
    PROCEEDINGS OF THE 2012 8TH INTERNATIONAL SYMPOSIUM ON COMMUNICATION SYSTEMS, NETWORKS & DIGITAL SIGNAL PROCESSING (CSNDSP), 2012,
  • [46] Fractional Fourier transforms on LP and applications
    Chen, Wei
    Fu, Zunwei
    Grafakos, Loukas
    Wu, Yue
    APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS, 2021, 55 : 71 - 96
  • [47] Wavelet-fractional Fourier transforms
    袁琳
    Chinese Physics B, 2008, (01) : 170 - 179
  • [48] Fractional Fourier transforms of hypercomplex signals
    Hendrik De Bie
    Nele De Schepper
    Signal, Image and Video Processing, 2012, 6 : 381 - 388
  • [49] Self-fractional-Fourier transforms
    Castro, A
    Ojeda-Castañeda, J
    3RD IBEROAMERICAN OPTICS MEETING AND 6TH LATIN AMERICAN MEETING ON OPTICS, LASERS, AND THEIR APPLICATIONS, 1999, 3572 : 441 - 445
  • [50] Fractional Fourier transforms in two dimensions
    Simon, R
    Wolf, KB
    JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND VISION, 2000, 17 (12): : 2368 - 2381