The generalized discrete fractional fourier transforms

被引:0
|
作者
Oraintara, S [1 ]
机构
[1] Univ Texas, EE Dept, Arlington, TX 76019 USA
关键词
D O I
暂无
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
hi this paper, we develop the generalized discrete fractional Fourier transform (GDFRFT) by factorizing the generalized discrete Fourier transform (GDFT) matrix. Specifically, the eigenvalues and eigen-vectors are presented and then used to define the GDFRFT. It is shown that the GDFRFT may be obtained by simple similarity transformations of the conventional DFRFT if the time and frequency shifting indexes are integers. Fast and efficient structures are presented and integer structures are also discussed.
引用
收藏
页码:1185 / 1188
页数:4
相关论文
共 50 条
  • [1] Fractional discrete Fourier transforms
    Deng, ZT
    Caulfield, HJ
    Schamschula, M
    OPTICS LETTERS, 1996, 21 (18) : 1430 - 1432
  • [2] Fractional discrete Fourier transforms
    Center for Applied Optical Sciences, Department of Physics, Alabama A and M University, P.O. Box 1268, Normal, AL 35762, United States
    Opt. Lett., 18 (1430-1432):
  • [3] Real Discrete Fractional Fourier, Hartley, Generalized Fourier and Generalized Hartley Transforms With Many Parameters
    Hsue, Wen-Liang
    Chang, Wei-Ching
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-REGULAR PAPERS, 2015, 62 (10) : 2594 - 2605
  • [4] Generalized fractional Fourier transforms
    J Phys A Math Gen, 3 (973):
  • [5] Generalized fractional Fourier transforms
    Liu, ST
    Jiang, JX
    Zhang, Y
    Zhang, JD
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1997, 30 (03): : 973 - 981
  • [6] Discrete fractional Hartley and Fourier transforms
    Pei, SC
    Tseng, CC
    Yeh, MH
    Shyu, JJ
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS II-ANALOG AND DIGITAL SIGNAL PROCESSING, 1998, 45 (06): : 665 - 675
  • [7] Orthogonal projections and discrete fractional Fourier transforms
    Ozaydin, M.
    Nemati, S.
    Yeary, M.
    DeBrunner, V.
    2006 IEEE 12TH DIGITAL SIGNAL PROCESSING WORKSHOP & 4TH IEEE SIGNAL PROCESSING EDUCATION WORKSHOP, VOLS 1 AND 2, 2006, : 429 - 433
  • [8] Fractional discrete q-Fourier transforms
    Munoz, Carlos A.
    Rueda-Paz, J.
    Bernardo Wolf, Kurt
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2009, 42 (35)
  • [9] Analysis and comparison of discrete fractional fourier transforms
    Su, Xinhua
    Tao, Ran
    Kang, Xuejing
    SIGNAL PROCESSING, 2019, 160 : 284 - 298
  • [10] The fast generalized discrete Fourier transforms: A unified approach to the discrete sinusoidal transforms computation
    Britanak, V
    Rao, KR
    SIGNAL PROCESSING, 1999, 79 (02) : 135 - 150